Section 4.10 Antiderivatives

1. Find the (family of) antiderivatives for the following.

(a) $f(x) = 4x^3$

- (b) $f(x) = 5\sin(x)$
- (c) $f(x) = \frac{e^x}{4}$
- (d) $f(x) = \sqrt{2}$
- (e) $f(x) = \frac{1}{x}$
- (f) $f(x) = 1 x + e^x$
- 2. Is $F(x) = x + xe^x$ is an antiderivative of $f(x) = (x + 1)e^x + 1$? Show your answer is correct.

Function	Antiderivative	Function	Antiderivative
$x^k \ (k \neq -1)$		e^x	
x^{-1} for all x		$1/(1+x^2)$	
1		$\sec^2(x)$	
$\sin(x)$		$\sec(x)\tan(x)$	
$\cos(x)$		$1/\sqrt{1-x^2}$	

3. Evaluate the integrals.

(a)
$$\int (x^{1/2} + x^{-7/4}) dx$$

(b) $\int (8e^x + \sec^2(x)) dx$
(c) $\int \frac{x^2 + x^{1/2} + 1}{x^{1/2}} dx$

4. Is the equality in the box true or false? Explain.

$$\int x \sec^2(x^2 + 1) \, dx = \tan(x^2 + 1) + C$$

5. Solve the initial value problem if $f'(x) = x + e^x$ and f(0) = 4.

6. A particle moving along the *x*-axis has acceleration $a(t) = 10 \sin(t)$ measured in cm/s^2 . Assume the particle as initial velocity v(0) = 0 and initial position s(0) = 0, find a function that models its velocity, v(t), and its position s(t).