1. The linear approximation, $L(x)$, of $f(x)$ at $x=a$ is:
2. Let $f(x)=x^{4 / 3}$.
(a) Find the linear approximation $L(x)$ of $f(x)$ at $a=1$.
(b) Sketch $L(x)$ on the graph below.

(c) Use $L(x)$ to estimate $(1.1)^{4 / 3}$ and mark this y -value on the graph above.
(d) Use your calculator to find $(1.1)^{4 / 3}$ exactly, mark this y-value on the graph above, determine the error between the exact value and the estimate, and mark the error on the graph above.
3. Estimate $\frac{1}{2.01}$ using an appropriate linear approximation (pick an $f(x)$ and an a). Use your calculator to determine the exact value and the error.
4. The differential of $y=f(x)$ is
5. Given $f(x)=x \sin \left(\frac{\pi}{2} x\right)$.
(a) Find the differential of $f(x)$ and evaluate the differential when $x=2$ and $d x=0.1$.
(b) Use a calculator to find $f(2.1)-f(2)$.
(c) Explain what the calculations in parts (a) and (b) represent and why they are close but not the same.
6. The side of a cube is measured to be 2 meters with a possible error in measurement of 0.1 meter. Use differentials to estimate the maximum possible error when computing the volume of the cube. Determine the relative (or percent) error.
