1. The Second Derivative Test
2. Use the Second Derivative Test to find the local extrema for $f(x)=-3 x^{5}+5 x^{3}$.
3. For the function $f(x)=\sqrt[3]{x}(8-x)$, determine (a) intervals where f is increasing/decreasing, (b) the locations of any local extrema, (c) intervals where f is concave up / concave down, and (d) inflection points. Then use technology to confirm your answers.
NOTE: $f^{\prime}(x)=\frac{-4(x-2)}{3 x^{2 / 3}}$ and $f^{\prime \prime}(x)=\frac{-4(x+4)}{9 x^{5 / 3}}$
4. Below is the graph of the derivative of $f, f^{\prime}(x)$. Use this graph to answer the questions.

(a) On what intervals is $f(x)$ increasing? decreasing?
(b) Determine the location of local extrema of f.
(c) On what intervals is $f(x)$ concave up? concave down?
(d) Determine the location of any inflection points of f.
5. Sketch a graph that satisfies all of the properties below.
(a) $f(2)=f(4)=0$
(b) $f^{\prime}(x)>0$ if $x<3$
(c) $f^{\prime}(3)$ does not exist
(d) $f^{\prime}(x)<0$ if $x>3$
(e) $f^{\prime \prime}(x)>0$ for $x \neq 3$.
