1. When f increases, decreases and its derivative.
2. The First Derivative Test
3. For the function $f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7$:
(a) Determine the intervals where $f(x)$ is increasing or decreasing.
(b) Use the First Derivative Test to identify the location of all local extrema.
(c) Use technology to confirm your work.
4. Identify all local extrema for $f(x)=x^{2} e^{-x}$.
5. Concavity and points of inflection
6. Test for Concavity
7. Determine the intervals for which the function $f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7$ is concave up and concave down. Identify the x-coordinate of any inflection points.
8. Do the same for $f(x)=x^{2} e^{-x}$.
