1. Why would you want to solve $f(x)=0$?
$f=0$ indicates where f may change signs
If $F^{\prime}=f=0$, then solutions may indicate locations of maxs/mins If $F^{\prime \prime}=f=0$, then solutions may indicate locations where concavity changes.
2. You are going to produce the iterative formula that is Newton's Method.
(a) Find the equation of the line tangent to $f(x)$ at $x=x_{1}$. (Assume $f^{\prime}\left(x_{1}\right) \neq 0$.)
point: $\left(x_{1}, f\left(x_{1}\right)\right)$
slope: $m=f^{\prime}\left(x_{1}\right)$
line: $y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$
(b) Determine the x-value where the tangent line from part (a) intersects the x-axis. Call this x-value x_{2}.
Intersecting x-axis $\equiv y=0$. set $y=0$.
$\sqrt{ }$ Solve for $x=x_{2}$.

$$
0-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right)
$$

Solve for X_{2}

(c) Draw a picture of your calculations on the graph below.

(d) Given a guess x_{n}, write the formula for how to get a better guess, x_{n+1}.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

3. MODEL PROBLEM: Let $f(x)=x^{3}-5 x . \quad f^{\prime}(x)=3 x^{2}-5$
(a) Factor $f(x)$, find its roots algebraically, and sketch its graph.

$$
f(x)=x\left(x^{2}-5\right)=x(x-\sqrt{5})(x+\sqrt{5})=0
$$

roots $x=0, x= \pm \sqrt{5}$

$$
\sqrt{5}=2.2360679775
$$

(b) Assume you couldn't factor the function and you wanted to find its positive root. What would be a reasonable first guess and why?
$x_{0}=2$ or $x_{0}=2.5$
(c) Using a first guess of $x_{1}=3$, calculate 3 iterations of Newton's method $\quad f^{\prime}(x)=3 x^{2}-5$
(c) Using a first guess of $x_{1}=3$, calculate 3 item 3

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=3-\frac{3^{3}-5.3}{3.3^{2}-5}=2.454545455=x_{2} \\
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=2.262153775=x_{3} \\
& x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}=2.236512357=x_{4} \\
& 2.236067977 \ldots \approx \sqrt{5}
\end{aligned}
$$

(d) How close is your estimate of the root, x_{3}, to the actual root?

It's correct to the As an aside:

$$
x_{5}=2.236068110
$$

$\frac{1}{1000}$ decimal position. 2

$$
\begin{aligned}
& x_{6}=2.236067977
\end{aligned}
$$

