## Section 4.9 Newton's Method

1. Why would you want to solve $f(x)=0$ ?
2. You are going to produce the iterative formula that is Newton's Method.
(a) Find the equation of the line tangent to $f(x)$ at $x=x_{1}$. (Assume $f^{\prime}\left(x_{1}\right) \neq 0$.)
(b) Determine the $x$-value where the tangent line from part (a) intersects the $x$-axis. Call this $x$-value $x_{2}$.
(c) Draw a picture of your calculations on the graph below.

(d) Given a guess $x_{n}$, write the formula for how to get a better guess, $x_{n+1}$.
3. Model Problem: Let $f(x)=x^{3}-5 x$.
(a) Factor $f(x)$, find its roots algebraically, and sketch its graph.
(b) Assume you couldn't factor the function and you wanted to find its positive root. What would be a reasonable first guess and why?
(c) Using a first guess of $x_{1}=3$, calculate 3 iterations of Newton's method. You must hold onto as many digits as your calculating device will allow. No rounding.
(d) How close is your estimate of the root, $x_{3}$, to the actual root?
