SECTION 4.9 NEWTON'S METHOD

- 1. Why would you want to solve f(x) = 0?
- 2. You are going to produce the *iterative* formula that is Newton's Method.

(a) Find the equation of the line tangent to f(x) at $x = x_1$. (Assume $f'(x_1) \neq 0$.)

(b) Determine the *x*-value where the tangent line from part (a) intersects the *x*-axis. Call this x-value x_2 .

(c) Draw a picture of your calculations on the graph below.

(d) Given a guess x_n , write the formula for how to get a better guess, x_{n+1} .

1

- 3. MODEL PROBLEM: Let $f(x) = x^3 5x$.
 - (a) Factor f(x), find its roots algebraically, and sketch its graph.

- (b) Assume you couldn't factor the function and you wanted to find its positive root. What would be a reasonable first guess and why?
- (c) Using a first guess of $x_1 = 3$, calculate 3 iterations of Newton's method. You must hold onto as many digits as your calculating device will allow. No rounding.

(d) How close is your estimate of the root, x_3 , to the actual root?