
REVIEW FOR FINAL EXAM

Topics from Chapter 5:

• §5.1 & 5.2: Approximating Area and the Definite Integral

• §5.3: The Fundamental Theorem of Calculus

• §5.4: The Net Change Theorem

• §5.4-5.7: Integration Formulas and the Method of Substitution

1. Compute the integrals below.

(a)
Z 0

�1
(t1/3 � t

2/3)dt

(b)
Z 2

0
x

p
4� x2 dx

(c)
Z
(x2.35 +

3

4x
+ e

x) dx

(d)
Z

1

1 + 4x2
dx

(e)
Z

sec2(5x) + e
3x

dx
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2. Find and simplify the derivative of the function h(x) =

Z et

1
t
7 ln(t) dt

3. A population of chickadees is changing at a rate of r(t) chickadees per year.

(a) What does
Z 4

1
r(t) dt = 400 mean? Make sure to include units in your answer.

(b) Is it possible for
Z t0

0
r(t) dt < 0 for some time t0 > 0? Explain your answer.

(c) Evaluate
Z 4

1
(5r(t) + 10) dt
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A quick review of main ideas/strategies.

• (§4.7) Optimization

• (§4.3 & 4.5) Derivatives, the Shape of a Graph, and Extrema

• (§4.6 & 4.8) Limits, Asymptotes, and L’Hopital’s Rule

• (§4.1) Related Rate Problems

• (§4.10) Initial Value Problems

• (§4.2) Linear Approximations and Differentials

4. A particle is moving with acceleration a(t) = t+e
t/2 in meters per second per second. You measure

that at time t = 0, its position is given by s(0) = 0 meters and its velocity is given by v(0) = 8
meters per second. Determine the position of the particle at time t = 1. Determine the average rate
of change of the particle between t = 1 and t = 3.

5. Sketch a graph H(x) with all of the following properties.

• The domain of H(x) is (�1, 3) [ (3,1)

• H(0) = 1

• lim
x!0

H(x) = 5

• lim
x!1

H(x) = �1

• lim
x!3

H(x) = 1

• H
0(x) > 0 and H

00(x) > 0 on the interval (�1, 0)
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6. The height of a right circular cylinder is increasing at a rate of 2 meters per second while its volume
remains constant. At what rate is the radius changing when the radius is 10 meters and height is
20 meters. (Note, the volume of a cylinder is given by V = ⇡r

2
h where r is the radius and h is the

height of the cylinder.)

7. Find the derivative for each function below.

(a) F (x) =
x� sin2(x)

x+ sin(2x)

(b) g(t) = t arcsin(t2)

(c) Find dy/dx for x ln(y) = 5 + x
2
y
2
.
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8. Find the following limits

(a) lim
x!5

1
x � 1

5

t� 5

(b) lim
x!1

2x3 � 3x

4x2 + 5x3

(c) lim
x!0

x
2

1� cos(x)

9. A farmer has 400 meters of fencing and wants to fence off a rectangular field that borders a straight
river. No fencing is needed along the river, which forms one side of the rectangle. What are the
dimensions of the field that has the largest area?
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10. Consider the function f(x) graphed below. Between x = 0 and 2, the graph is of a semicircle of
radius 1.

x

f(x)

�3 �2 �1 0 1 2 3 4
�1

0

1

2

(a) At what x values, if any, does f 0(x) not exist?

(b) What is the value of f 0(�2)?

(c) Evaluate
Z 4

�1
f(x) dx.

(d) Let g(x) =
Z x

1
f(s) ds. What is the value of g(0)?

(e) For g(x) from part d., what is the value of g0(4).
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