Topics from Chapter 5:

- $\S 5.1$ \& 5.2: Approximating Area and the Definite Integral
- §5.3: The Fundamental Theorem of Calculus
- §5.4: The Net Change Theorem
- §5.4-5.7: Integration Formulas and the Method of Substitution

1. Compute the integrals below.
(a) $\left.\int_{-1}^{0}\left(t^{1 / 3}-t^{2 / 3}\right) d t=\frac{3}{4} t^{5 / 3}-\frac{3}{5} t^{5}\right]_{-1}^{0}=(0)-\left(\frac{3}{4}-\left(\frac{3}{5}\right)(-1)\right)$

$$
=-\left(\frac{3}{4}+\frac{3}{5}\right)=\frac{-(15+12)}{20}=\frac{-27}{20}
$$

(b) $\left.\int_{0}^{2} x \sqrt{4-x^{2}} d x=-\frac{1}{2} \int_{4}^{0} u^{1 / 2} d u=-\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right]_{4}^{0}=-\frac{1}{3}\left(0^{3 / 2}-4^{3 / 2}\right)=\frac{8}{3}$
$u=4-x^{2}$
$d u=-2 x d x \| \begin{aligned} & x=0, u=4 \\ & -\frac{1}{2} d u=x d x \quad \\ & x=2, u=0\end{aligned}$
(c) $\int\left(x^{2.35}+\frac{3}{4 x}+e^{x}\right) d x=\frac{1}{3.35} X^{3.35}+\frac{3}{4} \ln |X|+e^{X}+C$
(d) $\int \frac{1}{1+4 x^{2}} d x=\frac{1}{2} \arctan (2 x)+C$
(e) $\int \sec ^{2}(5 x)+e^{3 x} d x=\frac{1}{5} \tan (5 x)+\frac{1}{3} e^{3 x}+C$
2. Find and simplify the derivative of the function $h(x)=\int_{1}^{e^{t}} t^{7} \ln (t) d t$

$$
h^{\prime}(x)=\left(e^{x}\right)^{7}\left(\ln \left(e^{x}\right)\right) \cdot e^{x}=x e^{8 x}
$$

3. A population of chickadees is changing at a rate of $r(t)$ chickadees per year.
(a) What does $\int_{1}^{4} r(t) d t=400$ mean? Make sure to include units in your answer.

The net change in chickadee population between years 1 and 4 is 400 chickadees.
[The population had a net gain of 400 chickadees between years 1 and 4.
(b) Is it possible for $\int_{0}^{t_{0}} r(t) d t<0$ for some time $t_{0}>0$? Explain your answer.

Yes. This would in dicate that the population of chickadees was smaller at year x_{0} that at year zero.
(c) Evaluate $\int_{1}^{4}(5 r(t)+10) d t=5 \int_{1}^{4} r(t) d t+\int_{1}^{4} 10 d t$

$$
\begin{aligned}
& =5(400)+(4-1)(10) \\
& =2000+30=2030
\end{aligned}
$$

A quick review of main ideas/strategies.

- (§4.7) Optimization
- (§4.3 \& 4.5) Derivatives, the Shape of a Graph, and Extrema
- (§4.6 \& 4.8) Limits, Asymptotes, and L’Hopital's Rule
- (§4.1) Related Rate Problems
- (§4.10) Initial Value Problems
- (§4.2) Linear Approximations and Differentials

4. A particle is moving with acceleration $a(t)=t+e^{t / 2}$ in meters per second per second. You measure that at time $t=0$, its position is given by $s(0)=0$ meters and its velocity is given by $v(0)=8$ meters per second. Determine the position of the particle at time $t=1$. Determine the average rate of change of the particle between $t=1$ and $t=3$.

$$
\begin{aligned}
& a=t+e^{t / 2} \quad \longrightarrow \quad s(t)=\int v(t) d t=\int\left(\frac{1}{2} t^{2}+2 e^{t / 2}+6\right) d t \\
& v=\int a(t) d t \\
& =\int\left(t+e^{t / 2}\right) d t \\
& =\frac{1}{2} t^{2}+2 e^{t / 2}+c \\
& =\frac{1}{6} t^{3}+4 e^{t / 2}+6 t+c \\
& 0=s(0)=0+4+0+c \text {. So } c=-4 \\
& S(t)=\frac{1}{6} t^{3}+4 e^{t / 2}+6 t-4 \\
& \text { at } t=0 \\
& 8=v(0)=2+c \\
& c=6 \\
& v(t)=\frac{1}{2} t^{2}+2 e^{t / 2}+6 \\
& \text { position at } t=l: s(1)=\frac{1}{6}+4 e^{1 / 2}+6-4 \\
& =4 e^{1 / 2}+\frac{13}{6} \text { metal } \\
& \text { avg vel from } t=1 \text { to } t=3: 1 s^{\prime} \\
& r \\
& 11-\frac{S(3)-S(1)}{3-1}=\frac{1}{2}\left(18.5+4 e^{3 / 2}-\frac{13}{6}-4 e^{2}\right) \\
& \text { 5. Sketch a graph } H(x) \text { with all of the following properties. } \\
& \text { - The domain of } H(x) \text { is }(-\infty, 3) \cup(3, \infty) \\
& \text { - } H(0)=1 \quad(0,1) \text { paint } \\
& \text { - } \lim _{x \rightarrow 0} H(x)=5 \quad y \rightarrow 5 \text { when } x \rightarrow 0 \\
& \text { - } \lim _{x \rightarrow \infty} H(x)=-1 \text { ha } \theta \quad y=-1 \\
& \begin{array}{l}
\text { - } \lim _{x \rightarrow 3} H(x)=\infty \quad \text { V.A. (8) } \boldsymbol{\chi}=\mathbf{3} \\
\text { - } H^{\prime}(x)>0 \text { and } H^{\prime \prime}(x)>0 \text { on the interval }(-\infty, 0)
\end{array}
\end{aligned}
$$

6. The height of a right circular cylinder is increasing at a rate of 2 meters per second while its volume remains constant. At what rate is the radius changing when the radius is 10 meters and height is 20 meters. (Note, the volume of a cylinder is given by $V=\pi r^{2} h$ where r is the radius and h is the height of the cylinder.)

$$
\frac{d h}{d t}=2 \mathrm{~m} / \mathrm{s}, \frac{d v}{d t}=0
$$

$$
\begin{aligned}
V & =\pi r^{2} h \\
0=\frac{d V}{d t} & =\pi\left(2 r \frac{d r}{d t} h+r^{2} \frac{d h}{d t}\right) \\
& =\pi\left(2 \cdot 10 \cdot \frac{d r}{d t} \cdot 20+10^{2} \cdot 2\right)
\end{aligned}
$$

$$
r=10, h=20
$$

So $0=400 \frac{d r}{d t}+200$ or $\frac{d r}{d t}=-\frac{1}{2} \mathrm{~m} / \mathrm{s}$
7. Find the derivative for each function below.

$$
\begin{aligned}
& \text { (a) } F(x)=\frac{x-\sin ^{2}(x)}{x+\sin (2 x)} \\
& F^{\prime}(x)=\frac{(x+\sin (2 x))(1-2 \sin (x) \cos (x))-\left(x-\sin ^{2}(x)\right)(1+2 \cos (2 x))}{(x+\sin (2 x))^{2}}
\end{aligned}
$$

$$
g^{\prime}(t)=1 \cdot \arcsin \left(t^{2}\right)+t \cdot\left(\frac{2 t}{\sqrt{1-t^{4}}}\right)
$$

(c) Find $d y / d x$ for $x \ln (y)=5+x^{2} y^{2}$.

$$
\begin{aligned}
& 1 \cdot \ln (y)+x \cdot \frac{1}{y} \frac{d y}{d x}=2 x y^{2}+2 x^{2} y \frac{d y}{d x} \\
& \left(\frac{x}{y}-2 x^{2} y\right) \frac{d y}{d x}=2 x y^{2}-\ln (y) \text {; So } \frac{d y}{d x}=\frac{2 x y^{2}-\ln (y)}{\frac{x}{y}-2 x^{2} y}
\end{aligned}
$$

8. Find the following limits
(a) $\lim _{x \rightarrow 5} \frac{\frac{1}{x}-\frac{1}{5}}{x-5}=\lim _{x \rightarrow 5} \frac{\frac{x-5}{5 x}}{x-5}=\lim _{x \rightarrow 5} \frac{1}{5 x}=25$
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{3}-3 x}{4 x^{2}+5 x^{3}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{2-\frac{3}{x^{2}}}{\frac{4}{x}+5}=\frac{2}{5}$
(c) $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos (x)} \stackrel{4}{=} \lim _{x \rightarrow 0} \frac{2 x}{\sin (x)} \stackrel{4}{=} \lim _{x \rightarrow 0} \frac{2}{\cos (x)}=2$

9. A farmer has 400 meters of fencing and wants to fence off a rectangular field that borders a straight river. No fencing is needed along the river, which forms one side of the rectangle. What are the dimensions of the field that has the largest area?

$$
\begin{aligned}
400 & =2 x+y \\
A & =x y \\
A & =x(400-2 x) \\
& =400 x-2 x^{2}
\end{aligned}
$$

10. Consider the function $f(x)$ graphed below. Between $x=0$ and 2 , the graph is of a semicircle of radius 1.

(a) At what x values, if any, does $f^{\prime}(x)$ not exist?

$$
x=-1,0,2
$$

(b) What is the value of $f^{\prime}(-2)$? -1 (slope)
(c) Evaluate $\int_{-1}^{4} f(x) d x=0+\frac{1}{2} \pi(1)^{2}+\frac{1}{2}(2)(1)=\frac{1}{2} \pi+1$

$$
=-\left(\frac{1}{4} \pi(1)^{2}\right)=-\frac{\pi}{4}
$$

(e) For $g(x)$ from part d., what is the value of $g^{\prime}(4)$.

$$
g^{\prime}(4)=f(4)=1
$$

