REVIEW FOR FINAL EXAM
Topics from Chapter 5:
e 85.1 & 5.2: Approximating Area and the Definite Integral
e 55.3: The Fundamental Theorem of Calculus
e 55.4: The Net Change Theorem
e $5.4-5.7: Integration Formulas and the Method of Substitution
1. Compute the integrals below.
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2. Find and simplify the derivative of the function h(z) = / t"In(t) dt
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3. A population of chickadees is changing at a rate of () chickadees per year.
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(a) What does / r(t) dt = 400 mean? Make sure to include units in your answer.
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(b) Is it possible for / r(t) dt < 0 for some time ty > 0? Explain your answer.
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A quick review of main ideas/strategies.
e (84.7) Optimization
o (§4.3 & 4.5) Derivatives, the Shape of a Graph, and Extrema
¢ (84.6 & 4.8) Limits, Asymptotes, and L'Hopital’s Rule
e (84.1) Related Rate Problems
e (84.10) Initial Value Problems
e (§4.2) Linear Approximations and Differentials

4. A particle is moving with acceleration a(t) = t+¢/? in meters per second per second. You measure
that at time ¢ = 0, its position is given by s(0) = 0 meters and its velocity is given by v(0) = 8
meters per second. Determine the position of the particle at time ¢t = 1. Determine the average rate
of change of the particle between?¢ = 1and t = 3.
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5. Sketch a graph H (x) with all of the following properties. ‘
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6. The height of a right circular cylinder is increasing at a rate of 2 meters per second while its volume
remains constant. At what rate is the radius changing when the radius is 10 meters and height is
20 meters. (Note, the volume of a cylinder is given by V = 7r?h where r is the radius and h is the
height of the cylinder.)
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7. Find the derivative for each function below.
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(b) g(t) = tarcsin(t?)
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(c) Find dy/dx for z1n(y) = 5 + z%y°.
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8. Find the following limits
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9. A farmer has 400 meters of fencing and wants to fence off a rectangular field that borders a straight
river. No fencing is needed along the river, which forms one side of the rectangle. What are the
dimensions of the field that has the largest area?
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10. Consider the function f(z) graphed below. Between z = 0 and 2, the graph is of a semicircle of
radius 1.
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(a) Atwhat x values, if any, does f’(z) not exist?
X= -l1,0 JyA
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(e) For g(x) from part d., what is the value of ¢'(4).
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