

Problem	Total Points	Score
1	6	
2	8	
3	6	
4	6	
5	10	
6	10	
7	10	
8	6	
9	10	
10	10	
11	5	
12	100	
extra credit		
Total		

- You have 2 hours.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.
- The last page of the exam contains formulas.

1. (6 points) Let $\mathbf{a}=2 \mathbf{i}+\mathbf{j}$ and $\mathbf{b}=\mathbf{i}-\mathbf{k}$.
(a) Find a unit vector that is orthogonal to both \mathbf{a} and \mathbf{b}.
(b) Find the vector projection of \mathbf{b} onto $\mathbf{a}: \operatorname{proj}_{\mathbf{a}} \mathbf{b}$.
2. (8 points) Find an equation of the plane through the point $(1,2,-1)$ and parallel to the plane $4 x-y-3 z=6$. Simplify to the form $a x+b y+c z+d=0$.
3. (6 points) Find the parametric equations for the tangent line to the curve $\mathbf{r}(t)=t^{2} \mathbf{i}+$ $\sin t \mathbf{j}+\cos t \mathbf{k}$ when $t=\pi / 2$.
4. (6 points) For the surface $f(x, y)=\sqrt{4 x^{2}+y^{2}}$, sketch and label the level curves for $z=0, z=1$, and $z=2$ on the axes below. Add to your graph, a vector \mathbf{v} such that the derivative of $f(x, y)$ at the point $(0,1)$ in the direction of \mathbf{v} is zero.

5. (8 points) Find the linearization, $L(x, y)$, of the function $f(x, y)=5 y \sqrt{x}$ at the point $(1,4)$.
6. (10 points) Let E be the solid bounded by the surfaces $y^{2}+z^{2}=9, x=-1$, and $x=1$. Set up, but do not evaluate, the triple integral $\iiint_{E} f(x, y, z) d V$ using the given order of integration:
(a) $d x d y d z$
(b) $d z d y d x$
7. (10 points)
(a) Find all critical points of the function: $f(x, y)=2-x^{4}+2 x^{2}-y^{2}$.
(b) Find all local maxima, local minima, and saddle points of the function in part (a).
8. (10 points) Find the mass of the lamina that occupies the region D in the first quadrant bounded by $y=0, y=\sqrt{3} x$, and $x^{2}+y^{2}=9$ and has density function $\rho(x, y)=$ $\left(x^{2}+y^{2}\right)^{3 / 2}$.
9. (10 points) Find the volume of the solid which is above the cone $z=\sqrt{x^{2}+y^{2}}$ and inside (below) the sphere $x^{2}+y^{2}+z^{2}=1$.
10. (6 points) Match the vector fields \mathbf{F} with the plots labeled I,II,III,IV:
(a) $\mathbf{F}(x, y)=\langle x, 1\rangle \quad \longleftarrow$ write " $I "$, "II",... in the spaces
(b) $\mathbf{F}(x, y)=\langle 1, x\rangle$
(c) $\mathbf{F}(x, y)=\nabla f$
where $f(x, y)=x^{2}+y^{2}$
(d) $\mathbf{F}(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$

(III)
11. (10 points) Find the work done by the force field $\mathbf{F}(x, y)=(1+x y) e^{x y} \mathbf{i}+x^{2} e^{x y} \mathbf{j}$ in moving a particle along the line segment from $(-1,2)$ to $(3,0)$.
12. (10 points) Suppose $\mathbf{F}(x, y)=\left\langle x^{2}+y, 3 x-y^{2}\right\rangle$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for any positivelyoriented, closed, simple curve C enclosing a region D which has area 10. (Hint. Green's Theorem)

Extra Credit (5 points) Assume $\mathbf{F}(x, y)$ is a conservative vector field defined on a open, connected region D. Fix any point (a, b) in D. Explain why the formula

$$
f(x, y)=\int_{(a, b)}^{(x, y)} \mathbf{F} \cdot d \mathbf{r}
$$

defines a function f on D. Explain why this function satisfies $\nabla f=\mathbf{F}$.

