Your	Name
rour	rame

Your Signature

		1
Problem	Total Points	Score
1	6	
2	8	
3	6	
4	6	
5	8	
6	10	
7	10	
8	10	
9	10	
10	6	
11	10	
12	10	
extra credit	5	
Total	100	

- You have 2 hours.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.
- The last page of the exam contains formulas.

- 1. (6 points) Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{b} = \mathbf{i} \mathbf{k}$.
 - (a) Find a unit vector that is orthogonal to both **a** and **b**.

(b) Find the vector projection of ${\bf b}$ onto ${\bf a}: {\rm proj}_{{\bf a}} {\bf b}.$

2. (8 points) Find an equation of the plane through the point (1, 2, -1) and parallel to the plane 4x - y - 3z = 6. Simplify to the form ax + by + cz + d = 0.

3. (6 points) Find the parametric equations for the tangent line to the curve $\mathbf{r}(t) = t^2 \mathbf{i} + \sin t \mathbf{j} + \cos t \mathbf{k}$ when $t = \pi/2$.

4. (6 points) For the surface $f(x, y) = \sqrt{4x^2 + y^2}$, sketch and label the level curves for z = 0, z = 1, and z = 2 on the axes below. Add to your graph, a vector **v** such that the derivative of f(x, y) at the point (0, 1) in the direction of **v** is zero.

5. (8 points) Find the linearization, L(x, y), of the function $f(x, y) = 5y\sqrt{x}$ at the point (1, 4).

- 6. (10 points) Let E be the solid bounded by the surfaces $y^2 + z^2 = 9$, x = -1, and x = 1. Set up, but do not evaluate, the triple integral $\iiint_E f(x, y, z)dV$ using the given order of integration:
 - (a) dx dy dz

(b) dz dy dx

- 7. (10 points)
 - (a) Find all critical points of the function: $f(x, y) = 2 x^4 + 2x^2 y^2$.

(b) Find all local maxima, local minima, and saddle points of the function in part (a).

8. (10 points) Find the mass of the lamina that occupies the region D in the first quadrant bounded by y = 0, $y = \sqrt{3}x$, and $x^2 + y^2 = 9$ and has density function $\rho(x, y) = (x^2 + y^2)^{3/2}$.

9. (10 points) Find the volume of the solid which is above the cone $z = \sqrt{x^2 + y^2}$ and inside (below) the sphere $x^2 + y^2 + z^2 = 1$.

- 10. (6 points) Match the vector fields \mathbf{F} with the plots labeled I,II,III,IV:

- Fall 2018
- 11. (10 points) Find the work done by the force field $\mathbf{F}(x, y) = (1 + xy)e^{xy}\mathbf{i} + x^2e^{xy}\mathbf{j}$ in moving a particle along the line segment from (-1, 2) to (3, 0).

12. (10 points) Suppose $\mathbf{F}(x, y) = \langle x^2 + y, 3x - y^2 \rangle$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ for any positivelyoriented, closed, simple curve C enclosing a region D which has area 10. (*Hint.* Green's Theorem)

Extra Credit (5 points) Assume $\mathbf{F}(x, y)$ is a conservative vector field defined on a open, connected region D. Fix any point (a, b) in D. Explain why the formula

$$f(x,y) = \int_{(a,b)}^{(x,y)} \mathbf{F} \cdot d\mathbf{r}$$

defines a function f on D. Explain why this function satisfies $\nabla f = \mathbf{F}$.