

Problem	Total Points	Score
1	15	
2	5	
3	8	
4	8	
5	10	
6	10	
7	15	
8	8	
9	15	
10	5	
extra credit	100	
Total		
10		

- You have 1 hour to complete the midterm.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (15 points) Given vectors $\mathbf{v}=2 \mathbf{i}-5 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{j}+2 \mathbf{k}$, answer the questions below.
(a) Find a unit vector parallel to \mathbf{w}.
(b) Find a vector \mathbf{u} orthogonal to both \mathbf{v} and \mathbf{w}.
(c) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$.
(d) Determine if the angle between \mathbf{v} and \mathbf{w} is acute, right, or obtuse. Show that your answer is correct.
2. (5 points) Describe in words or draw the region of \mathbb{R}^{3} represented by the inequality $x^{2}+y^{2} \leq 2$.
3. (8 points) Use the pictures of the vectors a and \mathbf{b} below to draw the following vectors.
(a) $\frac{-1}{2} \mathbf{a}$
(b) $\mathbf{b}+\mathbf{a}$

(c) $\mathbf{b}-\mathbf{a}$

4. (8 points) Write the equation of the sphere that passes through the point (2, 4, -1) and has center (1, 2, -3).
5. (10 points) Find equations for the line through ($-2,2,4$) perpendicular to the plane $2 x+5 z=12+y$.
6. (10 points) Find an equation of a plane through $(1,2,-2)$ that contains the line $x=2 t, y=$ $3-t, z=1+3 t$.
7. (15 points) Use traces to sketch and identify the surface $2 x^{2}+z^{2}=y^{2}-2$ Label your curves. (a) The traces for $y=0, y=2$, and $y=4$

(b) The traces for $z=0, z=1$ and $z=2$.

(c) Identify the surface. You may use a sketch, a verbal description including its proper name. I recommend all three. (Note that you may choose to make additional traces, if you like.)
8. (10 points) Find the unit tangent vector $\mathbf{T}(t)$ at time $t=0$ for the vector-valued function $\mathbf{r}(t)=$ $\left\langle\sin (2 t), e^{3 t}, t e^{t}\right\rangle$.
9. (8 points) Find the length of the curve $\mathbf{r}(t)=\mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ between $t=0$ and $t=1$. (Set up the integral only. You do not need to evaluate it.)
10. (15 points) Assume a projectile is fired from a position 100 meters above the ground with an initial speed of 500 meters per second and angle of elevation 30 degrees. Find vector-valued functions for the acceleration, velocity and position of the projectile in terms of time t. Assume $t=0$ when the projection is fired. Note that acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Extra Credit (5 points): Find a vector-valued function that represents the curve of intersection of $x^{2}+y^{2}=16$ and $x+z=5$.

