Solutions
Your Signature
\square

Problem	Total Points	Score
1	10	
2	15	
3	10	
4	15	
5	10	
6	15	
7	10	
8	15	
extra credit	5	
Total	100	

- You have 1 hour to complete the midterm.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (10 points) Evaluate the triple integral:

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} y \sin (x) d z d y d x \\
& =\int_{0}^{\pi} \int_{0}^{1}(\sin x)\left(1-y^{2}\right)^{2}(y) d y d x \\
& =\left(\int_{0}^{\pi} \sin x d x\right)\left(\int_{0}^{1}\left(1-y^{2}\right)^{1 / 2} y d y\right) \\
& =(-\cos x]_{0}^{\pi} \cdot\left(-\frac{1}{3}\left(1-y^{2}\right)^{3 / 2}\right]_{0}^{1} \\
& =(1+1)\left(-\frac{1}{3}\right)(0-1)=\frac{2}{3}
\end{aligned}
$$

2. (15 points) Evaluate the double integral:

$$
\begin{gathered}
0 \leq x \leq 1 \\
\sqrt{x} \leq y \leq 1
\end{gathered}
$$

$$
\begin{aligned}
& \int_{0}^{4} \int_{\sqrt{x}}^{2} \sqrt{y^{3}+1} d y d x \\
= & \int_{0}^{2} \int_{0}^{y^{2}}\left(y^{3}+1\right)^{\frac{1}{2}} d x d y \\
= & \int_{0}^{2}\left(y^{3}+1\right)^{1 / 2} y^{2} d y \\
= & \left.\frac{2}{9}\left(y^{3}+1\right)^{3 / 2}\right]_{0}^{2} \\
= & \frac{2}{9}\left(9^{3 / 2}-1\right)=\frac{2}{9}(27-1)=\frac{2.26}{9}=\frac{52}{9}
\end{aligned}
$$

3. (10 points) Change the integral below into cylindrical coordinates:

$$
\begin{aligned}
& 0 \leq z \leq 16-x^{2}-y^{2} \\
& 0 \leq y \leq \sqrt{16-x^{2}} \\
& 0 \leq x \leq 4 \\
& \int_{0}^{4} \int_{0}^{\sqrt{16-x^{2}}} \int_{0}^{16-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x \\
& =\int_{0}^{\pi / 2} \int_{0}^{4} \int_{0}^{16-r^{2}} r \cdot r d z d r d \theta
\end{aligned}
$$

4. (15 points) Let E be the solid that lies above the $x y$-plane and below the paraboloid $z=2-x^{2}-y^{2}$. Assume E has density function $\rho(x, y, z)=x^{2}+z^{4}$.
(a) Set up but do not evaluate the integral expression for the mass, m, of the solid.

$$
m=\iiint_{E} e^{d v}=\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2 x^{2}}} \int_{0}^{2 x^{2}-y^{2}}\left(x^{2}+z^{4}\right) d z d y d x
$$

$x y$-plane: $z=0$. or

$$
\begin{aligned}
& 0=2-x^{2}-y^{2} \text { or } \\
& x^{2}+y^{2}=2
\end{aligned}
$$

(b) Set up but do not evaluate the expression for \bar{z}, the z-coordinate of the center of mass of E.

$$
\begin{aligned}
\mu_{x y} & =\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2 x^{2}}}^{\sqrt{2 x x^{2}}} \int_{0}^{2 x^{2}-y^{2}} z\left(x^{2}+z^{4}\right) d z d y d x \\
\bar{z} & =\frac{M_{x y}}{m}
\end{aligned}
$$

5. (5 points each)
(a) Convert the point $(x, y, z)=(2,2,-2)$ in rectangular coordinates to spherical coordinates.

$$
\text { - } e=\sqrt{4+4+4}=2 \sqrt{3}
$$

$$
\theta=\pi / 4
$$

So $r=2 \sqrt{2}$.
AnS: $(\rho, \theta, \phi)=\left(2 \sqrt{3}, \pi / 4, \frac{\pi}{2}+\arctan \left(\frac{2}{2 \sqrt{2}}\right)\right)$

$$
\text { Not: } \phi=\frac{\pi}{2}+\arctan \left(\frac{1}{\sqrt{2}}\right)=\arccos \left(-\frac{1}{\sqrt{3}}\right)=\pi-\arctan (\sqrt{2})=\frac{\pi}{2}+\sin ^{-1}\left(\frac{1}{3}\right)
$$

(b) Describe in words, with a picture if you like, the region described by the inequalities:

$$
1 \leq \rho \leq 3, \quad 0 \quad \phi \leq \pi / 2, \quad 0 \leq \theta \leq 2 \pi
$$

A Solid.
Take the top half of a solid ball of radius 3 centered at the origin * scoop out a solid ball of radius 1 centereal at the origin. What is left is the Solid.
6. (15 points) Rewrite the integral below in spherical coordinates. The expressions in your answer must be simplified.

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

$z=\sqrt{4-x^{2}-y^{2}}$ or
$z^{2}+x^{2}+y^{2}=4$
$0 \leq x \leq \sqrt{4-y^{2}}$
$-2 \leq y \leq 2$

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\pi} \int_{0}^{2} e^{2} \sin ^{2} \phi \sin ^{2} \theta \cdot e \cdot e^{2} \sin \phi d e d \phi d \theta
$$

θ
$=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2} e^{5} \sin ^{3} \phi \sin ^{2} \theta d e d \phi d \theta$
7. (10 points) On the graph below, make a rough sketch of the vector field

$$
\mathbf{F}(x, y)=(x+y) \mathbf{i}+(x-y) \mathbf{j}
$$

Your sketch does not have to be perfect or to scale, but your vectors should be in roughly the correct direction and relative length. Make sure to include vectors at:

- several points along the positive x-axis
- several points along the postive y-axis
- the points (1,1), (2,1), (2,1) $(3,3)$
- the points (1/2), (2,2), (3/2)
y

on x-axis: $y=0$

$$
F=\langle x, x\rangle
$$

on y-axis: $x=0$ $F=\langle y,-y\rangle$

below
(15 points) Let E be the solid bounded abs by the paraboloid $z=x^{2}+y^{2}$ and below by the half-cone $z=\sqrt{x^{2}+y^{2}}$. Set up but do not evaluate a triple integral to find the volume of this solid. Pick a coordinate system for which this triple integral is as simple as possible to evaluate.
$\left[x^{2}+y^{2}=\sqrt{x^{2}+y^{2}}\right.$
when $x^{2}+y^{2}=1$
or $x=y=0$.
algebras

$$
r^{2}=r
$$

So $r^{2}-r=0$
So $r(r-1)=0$

So $r=0$ or $r=1$
So $r=0$ or $r=1$
$=\int_{0}^{2 \pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\cot \phi \csc \phi} e^{2} \sin \phi d e d \theta d \phi \quad \int^{\text {spherical }}$
Extra Credit: (5 points) Rewrite the triple integral

$$
=\int_{0}^{2 \pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{x^{2}+y^{2} \phi \cos \phi} e^{2} \sin \phi d e d \theta d \phi
$$

$$
\begin{aligned}
& \begin{aligned}
& \iiint_{E} 1 d r=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{r} r d z d r d \theta \\
= & \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} 1 d z d y d x
\end{aligned} \\
& \begin{aligned}
& \iiint_{E} 1 d r=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{r} r d z d r d \theta \text { B BES** } \\
= & \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} 1 d z d y d x
\end{aligned}
\end{aligned}
$$

