Your Name

Your Signature

Solutions

Problem	Total Points	Score
1	10	
2	15	
3	10	
4	15	
5	10	
6	15	
7	10	
8	15	
extra credit	5	
Total	100	

- You have 1 hour to complete the midterm.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (10 points) Evaluate the triple integral:

$$\int_0^{\pi} \int_0^1 \int_0^{\sqrt{1-y^2}} y \sin(x) \, dz \, dy \, dx$$

$$= \int_{0}^{\pi} \int_{0}^{1} (\sin x) (1-y^{2})^{\frac{1}{2}}(y) dy dx$$

= $\left(\int_{0}^{\pi} \sin x dx\right) \left(\int_{0}^{1} (1-y^{2})^{\frac{1}{2}} y dy\right)$
= $\left(-\cos x\right]_{0}^{\pi} \cdot \left(\frac{-1}{3}(1-y^{2})^{\frac{3}{2}}\right]_{0}^{1}$
= $(1+1)(-\frac{1}{3})(0-1) = \frac{2}{3}$

3. (10 points) Change the integral below into cylindrical coordinates:

- 4. (15 points) Let E be the solid that lies above the xy-plane and below the paraboloid $z = 2 x^2 y^2$. Assume E has density function $\rho(x, y, z) = x^2 + z^4$.
 - (a) Set up but do not evaluate the integral expression for the mass, m, of the solid.

xy-plane: z=0. $y=2-x^2-y^2$ or $x^2+y^2=2$

(b) Set up but do not evaluate the expression for \overline{z} , the z-coordinate of the center of mass of E.

- 5. (5 points each)
 - (a) Convert the point (x, y, z) = (2, 2, -2) in rectangular coordinates to spherical coordinates.

6. (15 points) Rewrite the integral below in *spherical* coordinates. The expressions in your answer must be simplified.

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2}\sqrt{x^{2}+y^{2}+z^{2}} dz dx dy$$

$$z = \sqrt{4-x^{2}-y^{2}} \text{ or } \int_{-\sqrt{4-x^{2}-y^{2}}}^{\pi} y^{2}\sqrt{x^{2}+y^{2}+z^{2}} dz dx dy$$

$$z^{2} + x^{2}y^{2} = 4 \int_{-\sqrt{2}}^{\pi} \int_{0}^{\pi} \int_{0}^{2} e^{2} \sin \phi \sin \theta \cdot e \cdot e^{2} \sin \phi de d\phi d\theta$$

$$0 \le x \le \sqrt{4-y^{2}} \int_{-\sqrt{2}}^{\pi} \int_{0}^{\pi} \int_{0}^{2} e^{2} \sin \phi \sin \theta \cdot e \cdot e^{2} \sin \phi de d\phi d\theta$$

$$-\frac{\pi}{2} \int_{0}^{\pi} \int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{0}^{2} e^{5} \sin^{3} \phi \sin \theta de d\phi d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \int_{0}^{\pi/2} \int_{0}^{2} e^{5} \sin^{3} \phi \sin \theta de d\phi d\theta$$

y=0

x=0

7. (10 points) On the graph below, make a rough sketch of the vector field

 $\mathbf{F}(x,y) = (x+y)\mathbf{i} + (x-y)\mathbf{j}$

Your sketch does not have to be perfect or to scale, but your vectors should be in roughly the correct direction and *relative* length. Make sure to include vectors at:

- several points along the positive *x*-axis
- several points along the postive y-axis
 the points (1, 1) (2+1) (3+1) (3-3)

• the points (1, 1), (2, 2), (3, 2)
• the points (1, 2), (2, 2), (3, 2)
y
on y-axis: y=0

$$F = \langle x, x \rangle$$

on y-axis: x=0
 $F = \langle y, -y \rangle$
 pt
 $(1,1)$
 $(2,0)$
 $(2,2)$
 $(3,3)$
 $\langle 41,0 \rangle$
 $(3,3)$
 $\langle 40,0 \rangle$

Extra Credit: (5 points) Rewrite the triple integral

