Your Name
$\square$

Your Signature


| Problem | Total Points | Score |
| :---: | :---: | :---: |
| 1 | 10 |  |
| 2 | 15 |  |
| 3 | 10 |  |
| 4 | 15 |  |
| 5 | 10 |  |
| 6 | 15 |  |
| 7 | 10 |  |
| 8 | 15 |  |
| extra credit | 5 |  |
| Total | 100 |  |

- You have 1 hour to complete the midterm.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.
- Formulas:

$$
-A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
$$

$-z=\rho \cos \phi, x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, d V=\rho^{2} \sin \phi d \rho d \theta d \phi$.

1. (10 points) Evaluate the triple integral:

$$
\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} y \sin (x) d z d y d x
$$

2. (15 points) Evaluate the double integral below. [HINT: Change the order of integration.]

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} \sqrt{y^{3}+1} d y d x
$$

3. (10 points) Change the integral below into cylindrical coordinates:

$$
\int_{0}^{4} \int_{0}^{\sqrt{16-x^{2}}} \int_{0}^{16-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x
$$

4. (15 points) Let $E$ be the solid that lies above the $x y$-plane and below the paraboloid $z=2-x^{2}-y^{2}$. Assume $E$ has density function $\rho(x, y, z)=x^{2}+z^{4}$.
(a) Set up but do not evaluate the integral expressions for the mass, $m$, of the solid.
(b) Set up but do not evaluate the expression for $\bar{z}$, the $z$-coordinate of the center of mass of $E$.
5. (10 points) Convert the point $(x, y, z)=(2,2,-2)$ in rectangular coordinates to spherical coordinates.
6. (15 points) Rewrite the integral below in spherical coordinates. The expressions in your answer must be simplified.

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

7. (10 points) On the graph below, make a rough sketch of the vector field

$$
\mathbf{F}(x, y)=(x+y) \mathbf{i}+(x-y) \mathbf{j}
$$

Your sketch does not have to be perfect or to scale, but your vectors should be in roughly the correct direction and relative length. Make sure to include vectors at:

- at least three points along the positive $x$-axis
- at least three points along the postive $y$-axis
- the points $(1,1),(2,2),(3,3)$


8. (15 points) Let $E$ be the solid bounded below by the paraboloid $z=x^{2}+y^{2}$ and above by the half-cone $z=\sqrt{x^{2}+y^{2}}$. Set up but do not evaluate a triple integral to find the volume of this solid. Pick a coordinate system for which this triple integral is as simple as possible to evaluate.

Extra Credit: (5 points) Rewrite the triple integral

$$
\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x
$$

in the order $d x d y d z$.

