

Problem	Total Points	Score
1	6	
2	6	
3	6	
4	18	
5	12	
6	20	
7	16	
8	6	
9	5	
extra credit	100	
Total		

- You have 1 hour to complete the midterm.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (6 points) Find and sketch the domain of the function $f(x, y)=\frac{\sin x}{\sqrt{y+1}}$.
 or $y>-1$
domain: $\{(x, y) \mid y>-1\}$

2. (6 points) A model for the surface area of the human body, S in square feet, is given as a function of weight, w in pounds, and height, h in inches. (That is $S=f(w, h)$.) Interpret in the context of the problem the meaning of

$$
S_{h}(160,70)=0.2
$$

$S_{n}(160,70)$ tells us that if a 70 in-tall person weighing 160 pound grows by 1 inch in height-assuming higher weight is constant that person can expect his/her surface area to increase by about 0.2 square feet
3. (6 points) A contour map of the function $z=f(x, y)$ is graphed below. Use it to answer the following questions.

(a) Find $f(0,1)$. (answer: \qquad) (Red dot is at $x=0, y=1$)
(b) On the contour diagram sketch a vector in the direction of $\nabla f(0,1) . \quad \nabla \boldsymbol{f}(\mathbf{0}, \mathbf{1}) \perp$ level curve
(c) On the contour diagram sketch a vector \mathbf{v} at the point P such that the directional derivative of f at P in the direction of \mathbf{v} would be zero.
\vec{V} should be tangent to kevel curve.
Either arrow is acceptable
4. (18 points) Let $f(x, y)=x^{2} e^{3 y}$.
(a) Find the linearization, $L(x, y)$, of f at the point $(1,0)$.

$$
\begin{array}{ll}
f(0,1)=1 . & z-z_{0}=f_{x} \cdot\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right) \\
f_{x}=2 x e^{3 y} & z-1=2(x-1)+3(y-0) \\
f_{x}(0,1)=2 & z=L(x, y)=1+2(x-1)+3 y \\
f_{y}=3 x^{2} e^{3 y} & \\
f_{y}(0,1)=3 \\
(b) \text { Find } L(1,1,0.2) .
\end{array}
$$

(b) Find $L(1.1,0.2)$.

$$
L(1.1,0.2)=1+2(0.1)+3(0.2)=1.8
$$

(c) Explain in geometric or numerical terms (or both) what the linearization $L(x, y)$ at a point

- $L(x, y)$ is the plane tangent to the surface $f(x, y)$ at point $\left(x_{0}, y_{0}\right)$.
- $L(x, y)$ is an approximation of $f(x, y)$ near the point of tangency, $\left(x_{0}, y_{0}\right)$.
- $L(x, y) \approx f(x, y)$ if (x, y) is close to $\left(x_{0}, y_{0}\right)$

5. (12 points)
(a) If $T=f(u, v), u=g(p, q, r)$ and $v=h(p, q, r)$, write the Chain Rule to find $\partial T / \partial p$.

$$
\frac{\partial T}{\partial p}=\frac{\partial T}{\partial u} \cdot \frac{\partial u}{\partial p}+\frac{\partial T}{\partial v} \cdot \frac{\partial v}{\partial p}
$$

(b) If $T=\frac{u}{v}, u=p q^{2} r$, and $v=p q+r$, find $\partial T / \partial p$ when $p=1, q=-1$ and $r=2$.

$$
\begin{array}{ll}
\frac{\partial T}{\partial p}=\left(\frac{1}{v}\right)\left(q^{2} r\right)+\left(-1 \cdot u \cdot v^{-2}\right)(q) & u=1 \cdot(-1)^{2} \cdot 2=2 \\
\text { at }(p, q, r)=(1,-1,2), \frac{\partial T}{\partial p}=\left(\frac{1}{1}\right)(1 \cdot 2)-\left(\frac{2}{1}\right)(-1)=2+2=4
\end{array}
$$

6. (20 points) Let $f(x, y, z)=3 x y+\cos z$.
(a) Find the gradient of $f(x, y, z)$.

$$
\nabla f(x, y, z)=\langle 3 y, 3 x,-\sin z\rangle
$$

(b) Find the directional derivative of the function f at the point $(2,3,0)$ in the direction of vector $\mathbf{v}=\langle 1,4,-1\rangle$.

$$
\begin{aligned}
& \nabla f(2,3,0)=\langle 3 \cdot 3,3 \cdot 2,-\sin 0\rangle=\langle 9,6,0\rangle ;|\vec{v}|=\sqrt{18}=3 \sqrt{2} \\
& \text { So, } \vec{u}=\left\langle\frac{1}{3 \sqrt{2}}, \frac{4}{3 \sqrt{2}}, \frac{-1}{3 \sqrt{2}}\right\rangle \\
& D_{\vec{u}} f(2,3,0)=\langle 9,6,0\rangle \cdot\left\langle\frac{1}{3 \sqrt{2}}, \frac{4}{3 \sqrt{2}}, \frac{-1}{3 \sqrt{2}}\right\rangle=\frac{9+24}{3 \sqrt{2}}=\frac{33}{3 \sqrt{2}}=\frac{11}{\sqrt{2}}
\end{aligned}
$$

(c) Find the maximum rate of change of f at the point $(2,3,0)$.

$$
|\nabla f(2,3,0)|=|\langle 9,0,0\rangle|=\sqrt{81+36}=\sqrt{117}
$$

(d) Find an equation of the tangent plane of the level surface $3 x y+\cos z=1 /$ at the point $(2,3,0)$.

$$
\begin{gathered}
\nabla f(2,3,0\rangle=\langle 9,6,0\rangle \text { (fro me)) } \\
\text { plane: } 9(x-2)+6(y-3)+0(z-0)=0 \\
\text { or } \\
9(x-2)+6(y-3)=0 \quad \text { or } \\
9 x+6 y=36
\end{gathered}
$$

7. (16 points) Let $f(x, y)=x^{3}+y^{3}-3 x^{2}-3 y^{2}-9 x$.
(a) Find all critical points of f.

$f_{x}(x, y)=3 x^{2}-6 x-9$	$f_{x x}(x, y)=6 x-6$	$f_{x y}(x, y)=0$
$f_{y}(x, y)=3 y^{2}-6 y$	$f_{y y}(x, y)=6 y-6$	$f_{y x}(x, y)=0$

Set $f_{x}=0$ and $f_{y}=0$.

$$
\begin{aligned}
& f_{x}=3 x^{2}-6 x-9=3\left(x^{2}-2 x-3\right)=3(x-3)(x+1)=0 \text {. So } x=-1 \text { or } x=3 \\
& f_{y}=3 y^{2}-6 y=3 y(y-2)=0 \text {. So } y=0 \text { or } y=2
\end{aligned}
$$

crit. pts: $(-1,0),(-1,2),(3,0),(3,2)$
(b) Identify the locations of the local minimum and maximum values and saddle point (s) of the function. Note that you do not need to actually find the maximum or minimum values.

8. (10 points) Evaluate $\left.\int_{0}^{3}\left(\int_{0}^{\pi / 2}\left(y+y^{2} \cos x\right) d x\right) d y=\int_{0}^{3} y x+y^{2} \sin x\right]_{x=0}^{x=\pi / 2} d y$

$$
\begin{aligned}
& \left.=\int_{0}^{3}\left(\frac{\pi}{2} y+y^{2}\right) d y=\frac{\pi}{4} y^{2}+\frac{1}{3} y^{3}\right]_{y=0}^{y=3}=\frac{9 \pi}{4}+9 \\
& u \sin y \sin \frac{\pi}{2}=1 \text { and } \\
& \sin 0=0
\end{aligned}
$$

a plane slicing of "front" of tunnel
$\xi^{\text {only }}$ parts where $x, y, z \geq 0$
9. (6 points) Find the volume of the solid in the first octant bounded by the cylinder $z=36-y^{2}$ and the plane $x=2$. Set up the double integral only. You do not need to evaluate it.

$$
V=\int_{0}^{2} \int_{0}^{6}\left(36-y^{2}\right) d y d x \stackrel{0 r}{=} \int_{0}^{6} \int_{0}^{2}\left(36-y^{2}\right) d x d y
$$

[Extra Credit] (5 points) Use Lagrange Multipliers to find the maximum and the minimum of the

$$
\begin{aligned}
& \nabla f(x, y)=\lambda \nabla g(x, y) \text { gives }(i) y^{2}=\lambda 2 \text { and }(i) 2 x y=\lambda 6 . \\
& \text { So } \lambda=\frac{y^{2}}{2}=\frac{2 x y}{6} \text {. So either: (3) } y=0 \text { or (4) } y=\frac{4 x}{6}=\frac{2 x}{3}
\end{aligned}
$$

For (0): If $y=0$, then $x=4$. Point (4,0$)$.
For (0): If $y=2 x / 3$, then $2 x+6(2 x / 3)=8$ or $6 x=8$ or $x=4 / 3$ And $y=8 / 9$. point $(4 / 3,8 / 9)$
Answer: $f(4,0)=0 \longleftarrow$ minimum

$$
f(4 / 3,8 / 9)=\frac{4}{3}\left(\frac{64}{81}\right) \leftarrow \text { maximum }
$$

