Your Name Solutions A

Your Signature

Problem	Total Points	Score
1	6	
2	6	
3	6	
4	18	
5	12	
6	20	
7	16	
8	10	
9	6	
extra credit	5	
Total	100	

• You have 1 hour to complete the midterm.

- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

Vf(0,1) L

1. (6 points) Find and sketch the domain of the function $f(x,y) = \frac{\sin x}{\sqrt{y+1}}$.

2. (6 points) A model for the surface area of the human body, S in square feet, is given as a function of weight, w in pounds, and height, h in inches. (That is S = f(w, h).) Interpret in the context of the problem the meaning of

 $S_h(160, 70) = 0.2.$ Sn (160,70) tells us that if a 70 in-tall person weighing 160 pound Brows by 1 inch in height-assuming higher weight is constant that person can expect his/her surface area to increase by about 0.2 square feet

3. (6 points) A contour map of the function z = f(x, y) is graphed below. Use it to answer the following questions.

- (b) On the contour diagram sketch a vector in the direction of $\nabla f(0, 1)$.
- (c) On the contour diagram sketch a vector \mathbf{v} at the point P such that the directional derivative of f at P in the direction of \mathbf{v} would be zero.

V should be langent to level curve. Either arrow is acceptable 4. (18 points) Let $f(x, y) = x^2 e^{3y}$.

(a) Find the linearization, L(x, y), of f at the point (1, 0).

f(o,i) = 1.	$Z - Z_0 = f_X \cdot (x - x_0) + f_y^{\circ}(y - y_0)$
$f_X = Z \times e^{-2}$	z - 1 = 2(x - i) + 3(y - 0)
$f_{y} = 3x^{2}e^{3y}$	Z = L(x,y) = 1 + 2(x-1) + 3y
$f_{u}(0,1) = 3$	
(b) Find $L(1.1)$.,0.2).

L(1.1, 0.2) = 1 + 2(0.1) + 3(0.2) = 1.8

(c) Explain in geometric or numerical terms (or both) what the linearization L(x, y) at a point (x₀, y₀).
L(x₁y) is the plane tangent to the surface f(x, y) at point (x₀, y₀).
L(x₁y) is an approximation of f(x₁y) near the point of tangency, (X₀, y₀).
L(x₁y) ≈ f(x₁y) if (x₁y) is close to (x₀, y₀).
L(x₁y) ≈ f(x₁y) if (x₁y) is close to (x₀, y₀).

(a) If T = f(u, v), u = g(p, q, r) and v = h(p, q, r), write the Chain Rule to find $\partial T / \partial p$.

$$\frac{\partial T}{\partial p} = \frac{\partial T}{\partial v} \cdot \frac{\partial u}{\partial p} + \frac{\partial T}{\partial v} \cdot \frac{\partial v}{\partial p}$$

(b) If
$$T = \frac{u}{v}$$
, $u = pq^2r$, and $v = pq + r$, find $\frac{\partial T}{\partial p}$ when $p = 1$, $q = -1$ and $r = 2$.

$$\frac{\partial T}{\partial p} = \left(\frac{1}{v}\right) \left(q^2r\right) + \left(-1 \cdot u \cdot v^2\right) \left(q\right) \qquad \qquad u = 1 \cdot (-1)^2 \cdot 2 = 2$$

$$v = 1 \cdot (-1) + 2 = 1$$

$$at \left(P, q, r\right) = (1, -1, 2), \quad \frac{\partial T}{\partial p} = (\frac{1}{1})(1 \cdot 2) - (\frac{2}{1})(-1) = 2 + 2 = 4$$

s

- 6. (20 points) Let $f(x, y, z) = 3xy + \cos z$.
 - (a) Find the gradient of f(x, y, z).

$$\nabla f(x,y,z) = \langle 3y, 3x, -sin z \rangle$$

(b) Find the directional derivative of the function f at the point (2,3,0) in the direction of vector $\mathbf{v} = \langle 1, 4, -1 \rangle$.

 $\nabla f(2,3,0) = \langle 3\cdot3, 3\cdot2, -\sin 0 \rangle = \langle 9,6,0 \rangle; |\overline{V}| = \sqrt{8} = 3\sqrt{2}$ So, $\overline{U} = \langle \frac{1}{3\pi^2}, \frac{4}{3\pi^2}, \frac{-1}{3\pi^2} \rangle$ $D_{\overline{U}}f(2,3,0) = \langle 9,6,0 \rangle \cdot \langle \frac{1}{3\pi^2}, \frac{4}{3\pi^2}, \frac{-1}{3\pi^2} \rangle = \frac{9+24}{3\pi^2} = \frac{33}{3\pi^2} = \frac{11}{\sqrt{2}}$

(c) Find the maximum rate of change of f at the point (2,3,0).

$$|\nabla f(2,3,0)| = |\langle 9,6,0\rangle| = \sqrt{81+34} = \sqrt{117}$$

(d) Find an equation of the tangent plane of the level surface $3xy + \cos z = \frac{17}{10}$ at the point (2, 3, 0).

Vf(2,3,0>=<9,6,0> (from@)

 $plane: \quad 9(x-2) + 6(y-3) + 0(z-0) = 0$ or $9(x-2) + 6(y-3) = 0 \quad \text{or}$ 9x + 6y = 36

- 7. (16 points)Let $f(x, y) = x^3 + y^3 3x^2 3y^2 9x$.
 - (a) Find all critical points of f. $\begin{array}{c|c} f_x(x,y) = 3x^2 6x 9 & f_{xx}(x,y) = 6x 6 & f_{xy}(x,y) = 0\\ \hline f_y(x,y) = 3y^2 6y & f_{yy}(x,y) = 6y 6 & f_{yx}(x,y) = 0 \end{array}$

Set
$$f_x = 0$$
 and $f_y = 0$.
 $f_x = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3) = 3(x - 3)(x + 1) = 0$. So $x = -1$ or $x = 3$
 $f_y = 3y^2 - 6y = 3y(y - 2) = 0$. So $y = 0$ or $y = 2$
crit. pts: (-1,0), (-1,2), (3,0), (3,2)

(b) Identify the locations of the local minimum and maximum values and saddle point(s) of the function. Note that you do not need to actually find the maximum or minimum values.

points	D = (6x-6)(6y-6)	fxx=(6x-6)	conclusion
(-1,0)	(-)(-)=+ 70	ta negative o	local maxat wn (-1,0)
(-1,2)	(-1)(+) < 0	\sim	Saddle at (-1,2)
(3,0)	(+)(-1)<0	~	Saddle@ (3,0)
(3,2)	(+)(+)70	+ U cup	local min at (3,2)

6.

MATH 253 CALCULUS III MITTER 2 FALL 2018
S. (10 points) Evaluate
$$\int_{0}^{3} (\int_{0}^{\pi/2} (y + y^{2} \cos x) dy dy = \int_{0}^{3} (y + y^{2} \sin y) \int_{x=0}^{x=\sqrt{2}} dy$$

 $= \int_{0}^{3} (\frac{\pi}{2}y + y^{2}) dy = \frac{\pi}{4}y^{2} + \frac{1}{3}y^{2} \int_{y=0}^{y=3} = \frac{9\pi}{4} + 9$
 $g=0$
 $\int_{x=0}^{3} (\frac{\pi}{2}y + y^{2}) dy = \frac{\pi}{4}y^{2} + \frac{1}{3}y^{2} \int_{y=0}^{y=3} = \frac{9\pi}{4} + 9$
 $g=0$
 $\int_{x=0}^{2} (\frac{\pi}{4}y + y^{2}) dy = \frac{\pi}{4}y^{2} + \frac{1}{3}y^{2} \int_{y=0}^{y=3} = \frac{9\pi}{4} + 9$
 $g=0$
(6 points) Find the volume of the solid in the first octant bounded by the cylinder $x = 30 - y^{2}$ and the plane $x = 2$, for up the double integral only. You do not need to evaluate it.
 $V = \int_{0}^{2} \int_{0}^{4} (36 - y^{2}) dy dx = \int_{0}^{2} \int_{0}^{2} (36 - y^{2}) dx dy$
Extra Credit! (5 points) Use Lagrange Multipliers to find the maximum and the minimum of the function $f(x, y) = xy^{2}$ subject to the constraint $2x + 6y = 8$.
 $\nabla f(x, y) = xy^{2}$ subject to the constraint $2x + 6y = 8$.
 $\nabla f(x, y) = \frac{1}{2} = \frac{2xy}{6}$. So $eitHer: O = 0$ or $O = \frac{1}{2} = \frac{4x}{6} = \frac{2x}{3}$.
For (O) : If $y=0$, Heen $x=4$. Point $(\frac{4y}{2})$.
For O : If $y=0$, Heen $x=4$. Point $(\frac{4y}{2})$.

f(4,0) = 0 (64) $f(4/3,8/9) = \frac{4}{3}(\frac{64}{91})$ (meximum Answer: f(4,0) = 0