Name: \qquad Solution

There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (2 points each) Use vectors $\vec{a}=3 \vec{i}-3 \vec{j}+\vec{k}$ and $\vec{b}=-\vec{i}+6 \vec{k}$ answer the questions below.

$$
12.2^{* 97^{2}}\left[\begin{array}{l}
\text { (a) Find }|\vec{a}|=\sqrt{3^{2}+(-3)^{2}+1^{2}}=\sqrt{9+9+1}=\sqrt{19} \\
\text { (b) Find } \vec{a}-3 \vec{b} \\
\vec{a}-3 \vec{b}=\langle 3,-3,1\rangle+\langle 3,0,-18\rangle=\langle 6,-3,-17\rangle
\end{array}\right.
$$

(c) Find $\vec{a} \cdot \vec{b}$

$$
12 \cdot 3 \cdot 5 \quad\langle 3,-3,1\rangle \cdot\langle-1,0,6\rangle=-3+0+6=3
$$

(d) Find a unit vector, \vec{u}, in the direction opposite vector \vec{a}.

$$
12.2 .24 \quad \vec{u}=\frac{-\vec{a}}{|\vec{a}|}=\frac{-1}{\sqrt{19}}\langle 3,-3,1\rangle=\left\langle\frac{-3}{\sqrt{19}}, \frac{3}{\sqrt{19}}, \frac{-1}{\sqrt{19}}\right\rangle
$$

(e) Find a vector, \vec{w}, of length 5 in the direction of vector \vec{b}.

$$
12.2 .26 \quad \vec{w}=5 \cdot \frac{\vec{b}}{|\vec{b}|}=\frac{5}{\sqrt{37}}\langle-1,0,6\rangle=\left\langle\frac{-5}{\sqrt{37}}, 0, \frac{30}{\sqrt{37}}\right\rangle
$$

(f) Determine if vector $\vec{c}=\langle 2,4,-4\rangle$ is orthogonal to vector \vec{a}. You must show your work to receive credit.

$$
12.3 .25
$$

$$
\vec{a} \cdot \vec{c}=\langle 3,-3,1\rangle \cdot\langle 2,4,-4\rangle=6-12-4=-10 \neq 0 . \begin{aligned}
& \text { So } \vec{a} \text { is not } \\
& \text { orthogonal to } \\
&
\end{aligned}
$$

(g) Find the scalar projection of \vec{b} onto \vec{a}.

$$
\operatorname{comp}_{\vec{a}} \stackrel{\rightharpoonup}{b}=\frac{\stackrel{\rightharpoonup}{b} \cdot \stackrel{\rightharpoonup}{a}}{|\stackrel{\rightharpoonup}{a}|}=\frac{3}{\sqrt{19}}
$$

(h) Find the vector projection of \vec{b} onto \vec{a}.

$$
H 4 \operatorname{proj}_{\vec{a}} \stackrel{\rightharpoonup}{b}=\left(\frac{\stackrel{\rightharpoonup}{b} \cdot \stackrel{\rightharpoonup}{a}}{|\stackrel{\rightharpoonup}{a}|^{2}}\right) \stackrel{\rightharpoonup}{a}=\frac{3}{19}<3
$$

12.3 .46
2. (2 points each) Let vectors \vec{u} and \vec{v} be graphed below.

(a) In the drawing above, sketch the vector projection of \vec{v} onto \vec{u}. Clearly indicate your answer.
(b) Would the scalar projection of \vec{v} onto \vec{u} be positive, negative or zero? Explain your answer.
negative.

- props \vec{u} points in the direction opposite \vec{u}.
- $\sin \varphi 90^{\circ}<\theta, \cos \theta<0$. Thus $\vec{a} \cdot \vec{b}<0$.

