Name:

There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (2 points each) Use vectors $\vec{a} = 3\vec{i} - 3\vec{j} + \vec{k}$ and $\vec{b} = -\vec{i} + 6\vec{k}$ answer the questions below.

(2 points each) Use vectors
$$\vec{a} = 3i - 3j + k$$
 and $\vec{b} = -i + 6k$ answer the

(a) Find $|\vec{a}| = \sqrt{3^2 + (-3)^2 + 1^2} = \sqrt{9 + 9 + 1} = \sqrt{19}$

(b) Find $\vec{a} - 3\vec{b} = \langle 3, -3, 1 \rangle + \langle 3, 9, -18 \rangle = \langle 6, -3, -17 \rangle$

$$\vec{a}$$
 - 3 \vec{b} = $\langle 3, -3, 1 \rangle + \langle 3, 0, -18 \rangle = \langle 6, -3, -17 \rangle$

(c) Find $\vec{a} \cdot \vec{b}$

(d) Find a **unit** vector, \vec{u} , in the direction *opposite* vector \vec{a} .

$$\vec{x} = -\frac{\vec{a}}{|\vec{a}|} = \frac{1}{\sqrt{2}} \langle 3, -3, 1 \rangle = \langle \vec{a}, \vec{a}, \vec{a} \rangle$$

(e) Find a vector, \vec{w} , of length 5 in the direction of vector \vec{b} .

$$\vec{w} = 5 \cdot \vec{b} = \frac{5}{\sqrt{37}} \langle -1,0,6 \rangle = \langle -\frac{5}{\sqrt{37}},0,\frac{30}{\sqrt{37}} \rangle$$

(f) Determine if vector $\vec{c} = \langle 2, 4, -4 \rangle$ is orthogonal to vector \vec{a} . You must show your work

12.3.25

$$\vec{a} \cdot \vec{c} = \langle 3, 3, 1 \rangle \cdot \langle 2, 4, -47 = 6 - 12 - 4 = -10 \neq 0$$
 So \vec{a} is not orthogonal to \vec{b}

$$comp\vec{b} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \frac{3}{\sqrt{19}}$$

(g) Find the scalar projection of
$$\vec{b}$$
 onto \vec{a} .

Compa $\vec{b} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \frac{3}{\sqrt{19}}$

(h) Find the vector projection of \vec{b} onto \vec{a} .

Projection of \vec{b} onto \vec{a} .

 $\vec{a} = \frac{3}{19} \langle 3, -3, 1 \rangle = \langle \frac{9}{19}, \frac{-9}{19}, \frac{3}{19} \rangle$.

- (a) In the drawing above, sketch the vector projection of \vec{v} onto \vec{u} . Clearly indicate your
- (b) Would the scalar projection of \vec{v} onto \vec{u} be positive, negative or zero? Explain your an-

negative.

- . projet points in the direction opposite ti.

 or

 sinu 9020, cost < 0. Thus \$\vec{a} \cdot \vec{b} < 0.