Name: \qquad Solutions

There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. Assume C is the upper half of the unit circle $x^{2}+y^{2}=1$.
(a) (2 points) Give a complete parametrization of C.

$$
x=\cos t, \quad y=\sin t, \quad 0 \leqslant t \leqslant \pi
$$

(b) (2 points) Assume $\int_{C}\left(2+x^{2} y\right) d s=2 \pi+\frac{2}{3}$. Explain what this means geometrically. Be specific.
The area under the surface $z=2+x^{2} y$ above the curve C (half circle) is $2 \pi+2 / 3$ units.
2. (8 points) Evaluate the line integral $\int_{C} y z \cos x d s$ where C is the curve parametrized by

$$
\begin{aligned}
& d s=\sqrt{1^{2}+(-3 \sin t)^{2}+(3 \cos t)^{2}} d t=\sqrt{1+9} d t=\sqrt{10} d t \\
& \text { So } \int_{c} y z \cos x d s=\sqrt{10} \int_{0}^{\pi / 2}(3 \cos t)(3 \sin t)(\cos t) d t \\
& \left.=9 \sqrt{10} \int_{0}^{\pi / 2} \cos ^{2} t \sin t d t=-3 \sqrt{10}(\cos t)^{3}\right]_{0}^{\pi / 2} \\
& =-3 \sqrt{10}\left[\cos ^{3}(\pi / 2)-(\cos 0)^{3}\right] \\
& =3 \sqrt{10}
\end{aligned}
$$

3. $\left(6\right.$ ports) $e^{2 x} \vec{\imath}+x y \vec{\jmath}$
4. (a) (6 points) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=\mathbf{j}$ and C is given

$$
\begin{aligned}
& \text { by }(t)=\vec{t}^{t^{3} \vec{u}+(1+t) \vec{f}} \vec{F}(t)=\left\langle e^{2 t^{3}}, t^{3}(1+t)\right\rangle=\left\langle e^{2 t^{3}}, t^{3}+t^{4}\right\rangle \\
& \vec{r}^{\prime}(t)=\left\langle 3 t^{2}, 1\right\rangle \\
& \left.\int_{c} \vec{F} \cdot d \vec{r}=\int_{0}^{1}\left(3 t^{2} e^{2 t^{3}}+t^{3}+t^{4}\right) d t=\frac{1}{2} e^{2 t^{3}}+\frac{1}{4} t^{4}+\frac{1}{5} t^{5}\right]_{0}^{1} \\
& =\frac{1}{2} e^{2}+\frac{1}{4}+\frac{1}{5}-\frac{1}{2}=\frac{10 e^{2}-1}{20}
\end{aligned}
$$

(b) (2 points) Interpret your answer from part (a).
$\int_{c} \vec{F} \cdot d \vec{r}$ calculates the writ done by force field \vec{F} on the particle moving along C.

