

There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (7 points) Let $\mathbf{F}(x, y, z)=2 x \sin y \mathbf{i}+\left(x^{2} \cos y+e^{z}\right) \mathbf{j}+\left(y e^{z}+1\right) \mathbf{k}$.
(a) Find a potential for \mathbf{F}.

$$
f(x, y, z)=x^{2} \sin y+y e^{z}+z
$$

check:

$$
f_{x}=2 x \sin y, \quad f_{y}=x^{2} \cos y+e^{z}, \quad f_{z}=y e^{z}+1
$$

(b) Use part (a) to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve: $x=t+1, y=\pi t$, and $z=t^{2}$ for $0 \leq t \leq 1$.
at $t=0: \quad x=1, y=0, z=0 \quad(1,0,0)$
at $t=1: x=2, y=\pi, z=1 \quad(2, \pi, 1)$
Since \vec{F} is conservative, the FT of Line Integrals applies:

$$
\int_{c} \vec{F} \cdot d \vec{r}=f(2, \pi, 1)-f(1,0,0)
$$

$$
=\left(2^{2} \cdot \sin \pi+\pi e^{1}+1\right)-\left(1^{2} \sin \theta+0 e^{0}+0\right)
$$

$$
=\pi e+1
$$

\longrightarrow See next page for a ternate order of integration \rightarrow
2. (7 points) Evaluate $\oint_{C} x y d x+x^{2} y \quad d y$ where C consists of the curve $y=\sqrt{x}$ from $(0,0)$ to $(4,2)$ followed by the line segments from $(4,2)$ to $(0,2)$ and from $(0,2)$ to $(0,0)$.

$$
\begin{aligned}
& \left.\int_{0}^{2} \int_{0}^{y^{2}}(2 x y-x) \underset{x}{4} \frac{d x d y}{x=y^{2}}=\int_{0}^{2} x^{2} y-\frac{1}{2} x^{2}\right]_{x=0}^{x=y^{2}} d y=\int_{0}^{2} y^{5}-\frac{1}{2} y^{4} d y \\
= & \left.\frac{1}{6} y^{4}-\frac{1}{10} y^{5}\right]_{y=0}^{y=2}=\frac{1}{6}(2)^{6}-\frac{1}{10}(2)^{5}-(0)=\frac{2^{5}}{3}-\frac{2^{4}}{5}=16\left(\frac{2}{3}-\frac{1}{5}\right)=7.46
\end{aligned}
$$

3. (6 points) Let $\mathbf{F}=y e^{x} \mathbf{i}+e^{x} \mathbf{j}+x z \mathbf{k}$.
(a) Find $\operatorname{curl} \mathbf{F}$.

$$
\begin{aligned}
\text { curl } \vec{F}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{j} & \vec{k} \\
\partial / \partial x & \partial / \partial y & \partial z \\
y e^{x} & e^{x} & x z
\end{array}\right| & =(0) \vec{\imath}-(z-0) \vec{\jmath}+\left(e^{x}-e^{x}\right) \vec{k} \\
& =-z \vec{j}
\end{aligned}
$$

(b) Find $\operatorname{div} \mathbf{F}$.

$$
\begin{aligned}
\operatorname{div} \vec{F} & =\frac{\partial}{\partial x}\left(y e^{x}\right)+\frac{\partial}{\partial y}\left(e^{x}\right)+\frac{\partial}{\partial z}(x z) \\
& =y e^{x}+0+x=x+y e^{x}
\end{aligned}
$$

2. (7 points) Evaluate $\oint_{C} x y d x+x^{2} y \quad d y$ where C consists of the curve $y=\sqrt{x}$ from $(0,0)$ to $(4,2)$ followed by the line segments from $(4,2)$ to $(0,2)$ and from $(0,2)$ to $(0,0)$.

$$
\begin{aligned}
& \left.=\int_{0}^{4} \int_{\sqrt{x}}^{2} x(2 y-1) d y d x=\int_{0}^{4} x\left(y^{2}-y-y\right]_{\overline{2}}^{D} d x=\int_{0}^{4} x(y-1)(x-x) x\right) d x \\
& \left.=\int_{0}^{4} x\left(2-x+x^{1 / 2}\right) d x=\int_{0}^{4} 2 x-x^{2}+x^{3 / 2} d x=x^{2}-\frac{1}{3} x^{3}+\frac{2}{5} x^{5 / 2}\right]_{x=0}^{x=4} \\
& =4^{2}-\frac{1}{3} \cdot 4^{3}+\frac{2}{5}(4)^{5 / 2}-(0) \\
& =16-\frac{64}{3}+\frac{64}{5}=7.4 \overline{6}
\end{aligned}
$$

