Name: \qquad Solutions

There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (6 points) Given points $P(0,-2,0), Q(4,1,2)$, and $R(5,3,1)$ in \mathbb{R}^{3}. Answer the questions below.
(a) Find a nonzero vector orthogonal to the plane through points P, Q, and R.

$$
\begin{aligned}
\overrightarrow{P Q} & =\langle 4-0,1-(-2), 2-0\rangle=\langle 4,3,2\rangle \\
\overrightarrow{P R} & =\langle 5-0,3-(-2), 1-0\rangle=\langle 5,5,1\rangle \\
\vec{n}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
4 & 3 & 2 \\
5 & 5 & 1
\end{array}\right| & =(3-10) \vec{\imath}-(4-10) \vec{\jmath}+(20-15) \vec{k} \\
& =-7 \vec{k}+6 \vec{\jmath}+5 \vec{k}
\end{aligned}
$$

(b) Find the area of triangle $P Q R$.

$$
\text { area } \triangle P Q R=\frac{1}{2}|\vec{n}|=\frac{\sqrt{49+36+25}}{2}=\frac{\sqrt{110}}{2}
$$

2. (6 points) Find equations (parametric, vector, or symmetric) for the line through the point $P(-2,5,8)$ and parallel to line L_{2} with parametric equations: $x=3-2 t, y=4 t, z=9$.
L_{2} has direction $\vec{d}=\langle-2,4,0\rangle$
using point $P(-2,5,8)$:
parametric

$$
\begin{aligned}
& x=-2-2 t \\
& y=5-4 t \\
& z=8
\end{aligned}
$$

vector

$$
\vec{r}=\langle-2,5,8\rangle+t\langle-2,4,0\rangle
$$

3. (6 points) Find an equation of the plane that contains the line $\vec{r}(t)=\langle-1,1,0\rangle+t\langle 1,4,-2\rangle$ and is parallel to the plane $z=3-6 x+y$.
plane: $6 x-y+z=0$. So $\vec{n}=\langle 6,-1,1\rangle$
line \vec{r} contains the point $P(-1,1,0)$
answer: $\quad 6(x-(-1))+(-1)(y-1)+1(z-0)=0$

So

$$
\begin{aligned}
& 6(x+1)-(y-2)+z=0 \text { or } \\
& 6 x-y+z=-7
\end{aligned}
$$

4. (2 points) State whether each expression is meaningful. If not, explain why. If so, state whether it is a vector or a scalar.
(a) $(\vec{a} \times \vec{b}) \times \vec{c}$
(d) $(\vec{a} \cdot \vec{b}) \cdot \vec{C}$ not meaning ful.
meaningful, vector $\vec{a} \cdot \vec{b}$ is a scalar, but the dot product requires vectors as inputs.
(b) $(\vec{a} \cdot \vec{b}) \times(\vec{c} \cdot \vec{d})$ not meaningful
$\vec{a} \cdot \vec{b}$ and $\vec{c} \cdot \vec{d}$ give scalars.
But the cross product requires vectas as inputs.
(b) $(a \times b) \cdot(c \times d)$ meaningful, scalar
