Name: $\qquad$ Solutions

There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (2 points each) For the surface $z^{2}-x^{2}-4 y^{2}=4$, sketch the traces below if the traces exist. Label your graphs. Note axes have been given and labelled for you.
(a) The traces for $y=0, y=1$

$$
\begin{aligned}
& y=0: \\
& z^{2}-x^{2}=4 \\
& y=1: \\
& z^{2}-x^{2}=8
\end{aligned}
$$

(b) The traces for $z=-3, z=0$, and $z=3$.


$$
\begin{aligned}
& z=-3: \\
& 5=x^{2}+4 y^{2} \\
& z=0: \\
& -x^{2}-4 y^{2}=4 \\
& \text { nosda }
\end{aligned}
$$

2. (2 points) Describe the surface $z=1-x^{2}$. Your description can be in words or with a rough sketch. I recommend both.
cylinder

$$
\rightarrow \begin{gathered}
z=1-x^{2} \\
y-\text { anything } \\
x
\end{gathered}
$$

In words, up-side-down parabolic-shaped

2
 trough openning down the negative $z$-axis. The trough is parallel to $y$-axis
3. (4 points) Find any points where the curve $\vec{r}(t)=t \vec{i}+\left(2 t-t^{2}\right) \vec{k}$ intersects the paraboloid $z=x^{2}+y^{2}$.

$$
\left.\begin{array}{rl}
\left.\vec{r}: \begin{array}{l}
x \\
y
\end{array}\right) \\
& =0 \\
z & =2 t-t^{2}
\end{array}\right) \text { curve. }
$$

plug into paraboloid:

$$
2 t-t^{2}=t^{2}+0^{2}
$$

So $0=2 t^{2}-2 t=2 t(t-1)$
So $t=0$ or $t=1$.
answer:
$\vec{r}$ intersects paraboloid
when
$t=0$ at point $(0,0,0)$
and

$$
t=1 \text { at point }(1,0,1)
$$

4. (5 points) For the curve $\vec{r}(t)=\left\langle\sqrt{t^{2}+3}, t, \ln \left(t^{2}+1\right)\right\rangle$, find parametric equations for the tangent line to the curve at the point $(2,1, \ln (2))$.
when $t=1, \vec{r}(1)=\langle 2,1, \ln 2\rangle . \leftarrow$ point

$$
\begin{aligned}
& \text { when } t=1, \vec{r}(1)=\langle 2,1, \ln 2\rangle, \leftarrow p o \text { int } \\
& \vec{r}^{\prime}(t)=\left\langle\frac{1}{2}\left(t^{2}+3\right)^{-1 / 2}(2 t), 1, \frac{2 t}{t^{2}+1}\right\rangle=\left\langle\frac{t}{\sqrt{t^{2}+3}}, 1, \frac{2 t}{t^{2}+1}\right\rangle
\end{aligned}
$$

$$
\vec{r}^{\prime}(1)=\left\langle\frac{1}{2}, 1, \frac{2}{2}\right\rangle=\left\langle\frac{1}{2}, 1,1\right\rangle-\text { direction vector }
$$

answer:

$$
\begin{aligned}
& x=2+\frac{1}{2} t \\
& y=1+t \\
& z=\ln 2+t
\end{aligned}
$$

5. (4 points) Evaluate the integral $\int_{0}^{4}\left(2 t^{3 / 2} \vec{i}+\vec{j}+e^{2 t} \vec{k}\right) d t$

$$
\begin{aligned}
& \left.=\frac{2 \cdot 2}{5} t^{5 / 2} \vec{i}+t \vec{J}+\frac{1}{2} e^{2 t} \vec{k}\right]_{0}^{4} \\
& =\left\langle\frac{4}{5} 4^{5 / 2}, 4, \frac{1}{2} e^{8}\right\rangle-\left\langle 0,0, \frac{1}{2}\right\rangle \\
& =\left\langle\frac{128}{5}, 4, \frac{1}{2} e^{8}-\frac{1}{2}\right\rangle
\end{aligned}
$$

