Name: \qquad
There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (4 points) Use the Chain Rule to find $\partial z / \partial t$ if $z=y^{2} \arctan (2 x), x=e^{s t}, y=t^{2}+s^{3}$.

$$
\begin{aligned}
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}=\left(\frac{2 y^{2}}{1+4 x^{2}}\right)\left(\operatorname{se}^{s t}\right)+(2 y \arctan (2 x))(2 t) \\
& =\frac{2 y^{2} \operatorname{set}}{1+4 x^{2 t}}+4 y t \arctan (2 x)
\end{aligned}
$$

2. (6 points) The temperature at a point (x, y) is $T(x, y)$, measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x=3 \cos (2 \pi t), y=4+\sqrt{t}$ where x and y are measured in centimeters. The temperature function satisfies $T_{x}(3,5)=8$ and $T_{y}(3,5)=-6$.
(a) In the context of the problem (temperature, crawling bug), explain the meaning of $T_{x}(3,5)=8$ in language your parents could understand.
If the bug is at position $(3,5)$ and moves in the positive x direction, it can expect the temperature to rise at a rate of $g^{\circ} \mathrm{C}$ per cm .
(b) How fast is the temperature changing on the bug's path after 1 second? (Give units with your answer.)

$$
\frac{d T}{d t}=\frac{\partial T}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial T}{\partial y} \cdot \frac{d u}{d t}=\frac{\partial \pi}{\partial x} \cdot\left(-6 \pi \sin (2 \pi t)+\frac{\partial T}{\partial y} \cdot \frac{1}{2} t^{-\frac{-1}{2}}\right.
$$

at $t=1, x=3, y=5$

$$
\left.\frac{d \tau}{d t}\right|_{t=1}=8(0)+(-6)\left(\frac{1}{2}\right)=-3^{\circ} \mathrm{C} / \mathrm{sec}
$$

3. (4 points) Find the equation of the tangent plane to the surface $x=y^{2}+z^{2}+1$ at the point
point $\longrightarrow(14,2,3)$.

$$
\begin{aligned}
& \rightarrow=-x+y^{2}+z^{2}+1=f(x, y, z) \\
& \nabla f(x, y, z)=\langle-1,2 y, 2 z\rangle \\
& \begin{aligned}
\nabla f(14,2,3) & =\langle-1,4,6\rangle \\
& =\vec{n}
\end{aligned}
\end{aligned}
$$

plan:

$$
-1(x-12)+4(y-2)+6(z-3)=0
$$

or $12=-x+4 y+6 z$
4. (6 points) Suppose that over a certain region of space the electircal potential V is given by the following equation:

$$
V(x, y, z)=\quad x y^{2}+y z
$$

(a) Find the rate of change of the potential at the point $P(-1,2,4)$ in the direction of the vector $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

$$
\begin{array}{cc}
|\vec{v}|=3 \text {. So, } \vec{u}=\left\langle\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right\rangle & D_{\bar{a}} V(-1,2,4)=\nabla V \cdot \vec{u} \\
\nabla V=\left\langle y^{2}, 2 x y+z, y\right\rangle & =4 \cdot \frac{2}{3}+0 \cdot \frac{-2}{3}+2 \cdot \frac{1}{3}= \\
\nabla V(-1,2,4)=\langle 4,-4+4,2\rangle & \text { answer } \\
=\langle 4,0,2\rangle &
\end{array}
$$

(b) In which direction does V change most rapidly at P ?

$$
\langle 4,0,2\rangle=\nabla \vee(-1,2,4)
$$

(c) What is the maximum rate of change of V at P ?

$$
|\nabla V|=\sqrt{4^{2}+0^{2}+2^{2}}=\sqrt{20}=2 \sqrt{5}
$$

