Name: $\qquad$
There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (5 points) Evaluate the integral $\iint_{D} \sin \left(x^{2}+y^{2}\right) d A$ where $D$ is the region between the circles with center at the origin and radii 1 and 3 .


$$
\begin{aligned}
\iint_{D} \sin \left(x^{2}+y^{2}\right) d A=\int_{0}^{2 \pi} \int_{1}^{3} \sin \left(r^{2}\right) r d r d \theta & =2 \pi\left[-\frac{\cos \left(r^{2}\right)}{2}\right]_{1}^{3} \\
& =\pi(-\cos (a)+\cos (1)) \\
& =\pi(\cos (1)-\cos (9))
\end{aligned}
$$

2. (4 points) Convert the integral $\int_{0}^{\frac{1}{\boldsymbol{Z}}} \int_{0}^{\sqrt{1-y^{2}}} x y^{2} d x d y$ to polar coordinates. (You do not need to evaluate the integral.)


$$
\begin{aligned}
& \text { 3. (3 points) Evaluate } \int_{0}^{\pi / 4} \int_{0}^{\cos \theta} 3 r d r d \theta . \\
& \left.=\int_{0}^{\pi / 4} \frac{3}{2} r^{2}\right]_{0}^{\cos \theta} d \theta=\int_{0}^{\pi / 4} \frac{3}{2} \cos ^{2} \theta d \theta=\frac{3}{4} \int_{0}^{\pi / 4} 1+\cos (2 \theta) d \theta \\
& \left.=\frac{3}{4}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)\right]_{\theta=0}^{\theta=1 / 4}=\frac{3}{4}\left(\frac{\pi}{4}+\frac{1}{2}\right)=\frac{3(\pi+2)}{16}
\end{aligned}
$$

4. (4 points) Let $D$ be the lamina enclosed by curves $y=0, y=\cos x$ for $-\pi / 2 \leq x \leq \pi / 2$. Assume $D$ has density $\rho(x, y)=y$.
(a) Set up but do not evaluate the double integral for $M_{x}$ the moment about the $x$-axis.

$$
M_{x}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\cos x} y^{2} d y d x
$$

(b) Assume the mass of the lamina $m=\pi / 4$, the moment about the $x$-axis $M_{x}=4 / 9$, and the moment about the $y$-axis $M_{y}=0$. Find the center of mass.

$$
(\bar{x}, \bar{y})=\left(\frac{m_{y}}{m}, \frac{m_{x}}{m}\right)=\left(\frac{0}{m_{4}}, \frac{4 / 9}{m_{4}}\right)=\left(0, \frac{16}{m}\right)
$$

5. (4 points) Set up but do not evaluate the double integral to find the surface area of the part of the paraboloid $z=5-x^{2}-y^{2}$ above the plane $z=1$.
$1=5-x^{2}-y^{2}$ or $x^{2}+y^{2}=4 \leftarrow$ circle of intersection.

$$
\begin{aligned}
& z_{x}=-2 x, \quad z_{y}=-2 y
\end{aligned}
$$

