Name:

There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (5 points) Evaluate the integral $\iint_{D} \sin \left(x^{2}+y^{2}\right) d A$ where D is the region between the circles with center at the origin and radii 1 and 3.
2. (4 points) Convert the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} x y^{2} d x d y$ to polar coordinates. (You do not need to evaluate the integral.)
3. (3 points) Evaluate $\int_{0}^{\pi / 4} \int_{0}^{\cos \theta} 3 r d r d \theta$.
4. (4 points) Let D be the lamina enclosed by curves $y=0, y=\cos x$ for $-\pi / 2 \leq x \leq \pi / 2$. Assume D has density $\rho(x, y)=y$.
(a) Set up but do not evaluate the double integral for M_{x} the moment about the x-axis.
(b) Assume the mass of the lamina $m=\pi / 4$, the moment about the x-axis $M_{x}=4 / 9$, and the moment about the y-axis $M_{y}=0$. Find the center of mass.
5. (4 points) Set up but do not evaluate the double integral to find the surface area of the part of the paraboloid $z=5-x^{2}-y^{2}$ above the plane $z=1$.
