Name: \qquad
There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. (6 points) Evaluate the iterated integral $\int_{0}^{3} \int_{0}^{1} \int_{0}^{1+y^{2}} y \sin (z) d z d y d x$.

$$
\begin{aligned}
& \left.=\int_{0}^{3} \int_{0}^{1}-y \cos (z)\right]_{z=0}^{z=1+y^{2}} d y d x=\int_{0}^{3} \int_{0}^{1} y-y \cos \left(1+y^{2}\right) d y d x \\
& \left.=\int_{0}^{3} \frac{1}{2} y^{2}-\frac{1}{2} \sin \left(1+y^{2}\right)\right]_{0}^{y=1} d x=\int_{0}^{3} \frac{1}{2}-\frac{1}{2} \sin (2)-\left(0-\frac{1}{2} \sin (1)\right) d x
\end{aligned}
$$

$$
=\frac{3}{2}(1-\sin (2)+\sin (1)
$$

2. (6 points) Write the triple integral $\iiint_{E} x^{2} d V$ in cylindrical coordinates where E is the solid that lies within the cylinder $x^{2}+y^{2}=2$, above the plane $z=0$ and below the cone $z^{2}=$ $x^{2}+y^{2}$. [You do not need to evaluate the integral.]

$$
\begin{aligned}
& x^{2}+y^{2}=2 \text { or } r^{2}=2 \text { or } r=\sqrt{2} \\
& z^{2}=x^{2}+y^{2} \text { or } z^{2}=r^{2} \text { or } z=r \quad \text { (above xy-plane!) } \\
& \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{0}^{r}(r \cos \theta)^{2} \cdot r d z d r d \theta \\
& =\int_{0}^{\sqrt{2}} \int_{0}^{2 \pi} \int_{z}^{\sqrt{2}} r^{3} \cos ^{2} \theta d r d \theta d z
\end{aligned}
$$

Formulas for Spherical Coordinates:
$z=\rho \cos \phi, x=\rho \sin \phi \cos \theta, x=\rho \sin \phi \sin \theta, d V=\rho^{2} \sin \phi d \rho d \theta d \phi$.
3. (3 points) Change the point $(2,2,2)$ from rectangular to spherical coordinates.

$$
\begin{aligned}
& e=\sqrt{2^{2}+2^{2}+2^{2}}=2 \sqrt{3} \\
& \theta=\arctan \left(\frac{2}{2}\right)=\pi / 4 \\
& \phi=\arccos \left(\frac{z}{e}\right)=\arccos \left(\frac{2}{2 \sqrt{3}}\right) \\
& P=\left(2 \sqrt{3}, \pi / 4, \arccos \left(\frac{2}{2 \sqrt{3}}\right)\right)
\end{aligned}
$$

4. (6 points) Set up the integral to find the volume of the part of the solid ball $\rho \leq a$ that lies between the cones $\phi=\pi / 6$ and $\phi=\pi / 3$.

$$
V=\int_{\pi / 6}^{\pi / 3} \int_{0}^{2 \pi} \int_{0}^{a} 1 \cdot e^{2} \sin \phi d e d \theta d \phi
$$

