

Your Signature
\square

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	12	
6	10	
7	16	
8	12	
9	10	
Total	100	

- You have 2 hours.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.
- All proofs on this exam are expected to be concise, mathematically rigorous, and formal. Thus, you must use of complete sentences, correct grammar and punctuation.
- Unless prescribed by the problem, you may use any proof technique you like; however, you must explicitly state the method you are using.

1. (10 points) Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$. Use proof by contrapositive to prove that if $x \nmid y z$, then $x \nmid y$ and $x \nmid z$.
2. (10 points) Let A, B, and C be sets. Prove that if $A \subseteq B, B \subseteq C$ and $C \subseteq A$, then $A=B$.
3. (10 points) Let n be a positive integer. Use the definition of congruence to prove that if $a \equiv 1(\bmod n)$, then $a^{2} \equiv 1(\bmod n)$.
4. (10 points) Use induction to prove that $3^{1}+3^{2}+3^{3}+\cdots+3^{n}=\frac{3^{n+1}-3}{2}$ for every $n \in \mathbb{N}$.
5. (12 points) Prove the $9 \mid\left(4^{3 n}+8\right)$ for every integer $n \geq 0$.
6. (10 points) Suppose $A=\{(m, n) \in \mathbb{N} \times \mathbb{R}: n=\pi m\}$. Prove $|A|=|\mathbb{N}|$, by using the definition. (That is, find an appropriate map and show it is a bijection.)
7. (16 points) Let S be a relation on \mathbb{R} defined as $x S y$ if $x-y \in \mathbb{Z}$.
(a) Explain why $\left(\frac{3}{2}, \frac{7}{2}\right) \in S$ and $\left(\frac{3}{2}, 1\right) \notin S$.
(b) Show that S is reflexive.
(c) Show that S is transitive.
(d) The relation S is an equivalence relation. Describe [1], the equivalence class containing 1 . You do not need to formally prove your answer is correct.
8. (12 points) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Prove that if $g \circ f: A \rightarrow C$ is surjective, then g is surjective.
(b) Give a counterexample to show that if $g \circ f: A \rightarrow C$ is surjective, it does not necessarily follow that f is surjective.
9. (10 points) Prove or disprove
(a) For all integers m and n, if $m+2 n$ is even, then m and n are both even.
(b) Let a be any rational number and b by any irrational number, then $a+b$ is irrational.
