Your Name
\square

Your Signature
\square

Problem	Total Points	Score
1	10	
2	10	
3	12	
4	8	
5	14	
6	6	
7	10	
8	10	
9	10	
10	100	
Total		

- You have 1 hour.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (10 points) Determine whether or not the statements below are logically equivalent. Justify your answer. Make sure you actually answer the question!

2. (10 points) For each statement below, determine if the statement is true or false and rigorously justify your answer.
(a) $\forall X \in \mathscr{P}(\mathbb{Z}), X \subseteq \mathbb{Q}$

True. If $x \in P(\mathbb{Z})$, then $x \subseteq \mathbb{Z}$. Since $\mathbb{Z} \subseteq \mathbb{Q}_{1}$, $X \leqslant \Theta$.
(b) Given any real number x, there is some real number y such that $x y=1$.

False.
Let $x=0$. Then $0 \cdot y=0=1$ has no solution.
3. (12 points) Determine whether each statement below is True or False. Briefly justify your answer.
(a) If $X=a, b, c$ and $Y=\{d, e\}$, then $X \cap Y=\{\emptyset\}$.

False. $X \cap Y=\varnothing$ not $\{D\}$.
(b) Let $A=\{1,2,3,4\}$. Then $\{(2,1)\} \in A \times A$.

False. $\quad(2,1) \in A \times A . \quad\{(2,1)\} \subseteq A \times A$.
(c) Let $A=\{1,2,3,4\}$. Then $\{1,2\} \in \mathbb{P}(\mathbb{A})$, where $\mathscr{P}(A)$ is the power set of A.
True. $\{1,2\} \leq A$. So $\{1,2\} \in P(A)$.
(d) $|\{a,\{a, b\},\{c, d, e, f\}\}|=6$

False. The sect has 3 elements, not 6 .
4. (8 points) Write the following sets in set-builder notation.
(a)

$$
\begin{aligned}
\{(1,2),(2,4),(3,6),(4,8),(5,10), \ldots\} & =\{(n, 2 n) \mid n \in \mathbb{N}\} \\
& =\{(a, b) \mid a \in \mathbb{N} \text { and } b=2 a\}
\end{aligned}
$$

(b) $\left\{\ldots, \frac{-1}{125}, \frac{1}{25}, \frac{-1}{5}, 1,-5,25,-125, \ldots\right\}=\left\{(-5)^{\boldsymbol{\eta}} \mid \boldsymbol{n} \in \boldsymbol{Z}\right\}$
5. (14 points) Write each of the following sets by listing its elements between braces or describing it with a familiar symbol or symbols.
(a) $\left\{n \in \mathbb{N} \mid(-1)^{n}=1\right\}=\{\ldots,-4,-2,0,2,2, \ldots\}$
(b) $\{X \in \mathscr{P}(\{a, b, c, d\}) \mid X \cup\{a, b\}=x\}=\{\{a, b\},\{a, b, c\},\{a, b, d\}$, $\{a, b, c, d\}\}$
(c) $\mathscr{P}(\{a\}) \times\{1,2\}=\{(\phi, 1),(\phi, 2),(\{a\}, 1),(\{a\}, 2)\}$
$p(\{a a)=\{a,\{a\}\}$
(d) $\bigcup_{n \in \mathbb{N}}\left[0,1+\frac{1}{n}\right]=[0,2]$
(where $[a, b]$ denotes the standard interval notation)

$$
[0,2],\left[0, \frac{3}{2}\right],\left[0,1+\frac{1}{3}\right], \ldots
$$

(e) $\bigcap_{n \in \mathbb{N}}\left[0,1+\frac{1}{n}\right]=[\mathbf{0}, \mathbf{1}]$
(where $[a, b]$ denotes the standard interval notation)

6. (6 points) Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq x^{2}\right\}$ and $Y=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq 5\right\}$. Sketch $X \cap \bar{Y}$.

7. (10 points) Rewrite the following statements in the form "If P, then Q." Your answer should be a sentence in English.
(a) A necessary condition for a function to be a polynomial is that the function is smooth.
necessary cond = conclusion.
If a function is polynomial, then the functim is smooth.
(b) The number x^{2} is irrational only if x is irrational.

If x^{2} is irrational, then x is irrational.
8. (10 points) Negate the statements below. Your answer must be a sentence in English and cannot contain the words "It is not the case that..."
(a) For every $A \subseteq S$, there exists a subset $B \subseteq S$ such that $A \neq B$ and $A \subseteq B$.

There exists a subset $A \subseteq S$ such that for all subsets $B \leq S, A=B$ or $A \leqq B$.
(b) For every subset X of the natural numbers, if $|X|$ is infinite, then $|\bar{X}|$ is finite.

There exists a subset $x \subseteq \mathbb{N}$ such that $|x|$ is infinite and $|\overline{\mid}|$ is infinite.
9. (10 points) Let $S=\{A, B, C, D, E, F, G\}$, a set of seven symbols. For each of the counting problems below, you may leave your answer as a product. For example, all of the following would be acceptable forms of an answer: $8 \cdot 7 \cdot 6^{3}$ or $5 \cdot P(30,5)$ or $\binom{15}{4}$.
(a) List two distinct 4-permutations of S and determine the number of 4-permutations of S.
$A B C D$
$A B D C$

$$
P(7,4)=7 \cdot 6 \cdot 5 \cdot 4=\frac{7!}{3!}
$$

(b) How many lists of length four can be made from S such that the list contains at least one repeated letter?

$$
7!-P(7,4)=7!-\frac{7!}{3!}
$$

(c) How many lists of length 20 can be made from S such that the letter A appears exactly twice?

$$
\binom{20}{2} \cdot 6^{18}
$$

10. (10 points) For the following counting problems, your answer should be an integer.
(a) Let $S=\{1,2,3,4,5,6,7,8\}$. Determine the number of 4 -element subsets of S.

$$
\binom{8}{4}=\frac{8!}{4!4!}=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}=7 \cdot 3 \cdot 5=105
$$

(b) Let $A=\{a, b, c\}$. Find $|\mathscr{P}(A)|$.

$$
2^{3}=8
$$

(c) Let $A=\{a, b, c\}$ and $B=\{b, c, d, e, f\}$. Find $|A \times B|$.

$$
3 \cdot 5=15
$$

