Your Name
\square

Your Signature
\square

Problem	Total Points	Score
1	15	
2	10	
3	15	
4	15	
5	20	
6	15	
7	10	
Total	100	

- You have 1 hour.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (a) (5 points) Complete the following formal definition:

Given integers a and b, we say a divides b if
there exists an integer n such that $b=a n$.
(b) (10 points) Suppose a, b, and c are integers. Use a direct proof to prove that if $a \mid b$ and $a \mid\left(b^{2}+c\right)$, then $a \mid c$.

Proof: Suppose a, b, and c are integers, $a \mid b$, and $a \mid\left(b^{2}+c\right)$. Since $a \mid b$ and $a \mid\left(b^{2}+c\right)$, we know (by definition) that there exist integers m and n such that $a m=b$ and $a n=b^{2}+c$. Thus,

$$
\begin{aligned}
c & =a n-b^{2} & \text { rewriting the second equation } \\
& =a n-a^{2} m^{2} & \text { substituting in for } b \\
& =a\left(n-a m^{2}\right) . &
\end{aligned}
$$

Since, $n=a m^{2} \in \mathbb{Z}$, we have shown that $a \mid c$.
2. (10 points) Use the method of Proof by Contrapositive to prove the proposition below.

Proposition: Suppose $a, b, c \in \mathbb{Z}$. Prove that if $a \nmid b c$, then $a \nmid b$ and $a \nmid c$.

Proof: (by contrapositive) Suppose $a, b, c \in \mathbb{Z}$. We will prove that if $a \mid b$ or $a \mid c$, then $a \mid b c$.
Suppose $a \mid b$. Then, by definition, there exists $n \in \mathbb{Z}$ such that $b=a n$. Thus, $b c=a n c=$ $a(n c)$. Since c and n are both integers, $c n$ is an integer. Thus, $b c=a(n c)$ demonstrates that $a \mid b c$.
Suppose $a \mid c$. Then, since multiplication is commutative, the same argument shows that $a \mid b c$.
3. (a) (5 points) Complete the following formal definition: Given $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, we write $a \equiv b \bmod n$ if $n \mid(a-b)$.
(b) (10 points) Suppose $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \bmod n$ and $a \equiv c \bmod n$, then $2 a \equiv b+c \bmod n$.

Proof: (direct) Suppose Suppose $a, b, c \in \mathbb{Z}, n \in \mathbb{N}, a \equiv b \bmod n$ and $a \equiv c$ $\bmod n$. By the definition of congruence, $n \mid(a-b)$ and $n \mid(a-c)$. From the definition of divides, it follows that $k_{1} n=a-b$ and $k_{2} n=a-c$, for some $k_{1}, k_{2} \in \mathbb{Z}$. Now,

$$
\begin{aligned}
2 a-(b+c) & =(a-b)+(a-c) \\
& =k_{1} n+k_{2} n \\
& =\left(k_{1}+k_{2}\right) n,
\end{aligned}
$$

where we know that $k_{1}+k_{2} \in \mathbb{Z}$. Thus, $n \mid 2 a-(b+c)$. Thus, $2 a \equiv(b+c) \bmod n$.
4. (10 points) Any method may be used to prove the proposition below but you must state explicitly the method you are using.
Proposition: Suppose $x, y \in \mathbb{R}$. If $x y-x^{2}+x^{3} \geq x^{2} y^{3}+4$, then $x \geq 0$ or $y \leq 0$.
Proof: (by contradiction) Suppose $x, y \in \mathbb{R}, x y-x^{2}+x^{3} \geq x^{2} y^{3}+4$ and it is not the case that $x \geq 0$ or $y \leq 0$. Thus, we know $x<0$ and $y>0$. Now all the terms on the left side of the inequality, namely $x y,-x^{2}$ and x^{3} are negative. In addition, all the terms on the right had side, namely $x^{2} y^{3}$ and 4, are positive. Now we have contradicted the assumption that $x y-x^{2}+x^{3} \geq x^{2} y^{3}+4$ since the left side is negative and the right side is positive.
Thus, we conclude that if $x y-x^{2}+x^{3} \geq x^{2} y^{3}+4$, then $x \geq 0$ or $y \leq 0$.
5. (a) (5 points) Complete the following formal definition:

The integer n is even if there exists $k \in \mathbb{Z}$ such that $n=2 k$.
(b) (15 points) Let a be an integer. Prove that a is even if and only if $a^{2}+2 a+9$ is odd.
Proof: Let a be an integer.
\Rightarrow : First we will show that if a is even, then $a^{2}+2 a+9$ is odd.
We will proceed using a direct proof. Assume a is even. Then by definition there exists an integer k such that $a=2 k$. Thus, $a^{2}+2 a+9=(2 k)^{2}+2(2 k)+9=$ $2\left(2 k^{2}+2 k+4\right)+1$, where $2 k^{2}+2 k+4 \in \mathbb{Z}$. Thus, we have shown that $a^{2}+2 a+9$ is odd.
\Leftarrow : Second we will show that if $a^{2}+2 a+9$ is odd, then a is even.
We will proceed by contrapositive. Thus, we will show that if a is odd, then $a^{2}+2 a+9$ is even.
Suppose a is odd. Then by definition there exists an integer k such that $a=2 k+1$. Thus, $a^{2}+2 a+9=(2 k+1)^{2}+2(2 k+1)+9=2\left(k^{2}+4 k+6\right)$, where $k^{2}+4 k+6 \in \mathbb{Z}$. Thus, we have shown that $a^{2}+2 a+9$ is even.

Thus, a is even if and only if $a^{2}+2 a+9$ is odd.
6. (a) (5 points) Complete the following formal definition:

Given sets A and B, we write $A \subseteq B$ if for every $a \in A$, we know $a \in B$.
(b) (10 points) Suppose A, B and C are nonempty sets. Prove that if $A \times B \subseteq B \times C$, then $A \subseteq C$.
Proof: Suppose A, B and C are nonempty sets and that $A \times B \subseteq B \times C$. Let $a \in A$ and let $b \in B$. Then $(a, b) \in A \times B$, by the definition of a cartesian product. Since $A \times B \subseteq B \times C$, we know $(a, b) \in B \times C$. Thus, by the definition of $B \times C$, it follows that $a \in B$. Thus, we have shown that $A \subseteq B$.
Let $a \in A$. Since $A \subseteq B$, we know that $a \in B$. Thus $(a, a) \in A \times B$, by the definition of $A \times B$. Since $A \times B \subseteq B \times C$, we know $(a, a) \in B \times C$. Thus, by the definition of $B \times C$, it follows that $a \in C$. Thus, we have shown that $A \subseteq C$.
7. (10 points) Prove that there exists a set X such that $\mathbb{N} \in X$ and $\mathbb{R} \in \mathscr{P}(X)$.

Proof: Let $X=\mathbb{R} \cup\{\mathbb{N}\}$. (So, X is the set of all real numbers to which I have added a single additional element called the set of all natural numbers.) Thus, $\mathbb{N} \in X$ since this element is added explicitly. In addition , $\mathbb{R} \in \mathscr{P}(X)$ since for every $r \in \mathbb{R}, r \in X$.

