Homework \#0

due $1 / 22 / 2020$
§4.1, \#3

$$
\int_{1}^{2} \frac{1}{x^{2}} d x=\int_{1}^{2} x^{-2} d x=-\left.x^{-1}\right|_{1} ^{2}=-\frac{1}{2}+1=\frac{1}{2}
$$

§4.2, \#17
Theorem 1. $\sqrt{2}$ is irrational.
Proof. Suppose, to the contrary, that $\sqrt{2}$ is rational. Then

$$
\sqrt{2}=\frac{a}{b}
$$

where $a, b \in \mathbb{Z}, b \neq 0$ with a, b having no common factors. Squaring yields

$$
2=\frac{a^{2}}{b^{2}},
$$

so

$$
2 b^{2}=a^{2}
$$

This shows 2 divides a^{2}, and so since 2 is prime by a lemma proved in class, we see 2 divides a. Letting $a=2 c$ for some $c \in \mathbb{Z}$, this implies

$$
2 b^{2}=4 c^{2},
$$

so

$$
b^{2}=2 c^{2} .
$$

Now the same argument as above, but with b, a replaced by c, b, shows 2 divides b. Therefore 2 divides both a and b. But this contradicts that a, b had no common factors.
§99.99, \#99

P	Q	$P \vee Q$	$P \Rightarrow Q$	$P \Longleftrightarrow Q$
T	T			T
T	F			
F	T			
F	F			

An example of aligned equations:

$$
\begin{aligned}
x y & =(2 a+1)(2 b+1) \\
& =(2 a)(2 b)+(2 a)(1)+1(2 b)+1(1) \\
& =4 a b+2 a+2 b+1 \\
& =2 k+1,
\end{aligned}
$$

