Your Name
\square

Your Signature
\square

Problem	Total Points	Score
1	15	
2	14	
3	14	
4	15	
5	10	
6	12	
7	10	
8	10	
Total	100	

- You have 1 hour.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (15 points)
(a) Complete the definition below.

Given integers a and b and $n \in \mathbb{N}$, we say that a and b are congruent modulo n if
(b) Use the definition and a direct proof to prove the statement below. Do not use any previous results from the text or in homework.

If $a \in \mathbb{Z}$ and $a \equiv 1(\bmod 7)$, then $a^{2} \equiv 1(\bmod 7)$.

2. (14 points)

(a) List the elements in the set $\{x \in \mathbb{Z}:|3 x| \leq 6\}$.
(b) List the elements in the set $\{X \subseteq\{a, b, c\}: a \notin X\}$.
(c) Write the set $\left\{\cdots, \frac{-\pi}{4}, \frac{-\pi}{2}, 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \cdots\right\}$ in set-builder notation.
(d) Determine the cardinality of the set $\{\emptyset,\{\emptyset\},\{1,2\},\{1,2,3\}\}$.
3. (14 points) Let $A=\{0,1,2,3,4\}$ and $\mathcal{P}(A)$ denote the power set of A.
(a) Determine $|\mathcal{P}(A)|$, the cardinality of $\mathcal{P}(A)$.
(b) List 3 distinct elements of $\mathcal{P}(A)$ such that each element has a different cardinality. Use correct notation.
(c) List 3 distinct subsets of $\mathcal{P}(A)$ such that each subset has different cardinality. Use correct notation.
4. (15 points) Let $A=\{0,1,2\}, B=\{1,2,3,4\}$ and define the universal set $U=\{0,1,2,3, \cdots, 9\}$. Find:
(a) $A \cup B$
(b) $\overline{A \cup B}$
(c) $|A \times B|$
(d) $(A \times A) \cap(B \times B)$
(e) $(A \times A)-(A \times B)$
5. (10 points) Complete the truth table for the statement $P \Leftrightarrow(Q \vee \sim R)$.

P	Q	R	
T	T	T	
T	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

6. (12 points) Negate the two statements below. Your answer should be a complete sentence in English. (You are not asked to determine the truth value of these statements.)
(a) There exists a real number r such that $r>1$ and $r^{2}<1.001$.
(b) If $a \in X$, then $a \notin Y-X$.
7. (10 points) Prove the statement below with a contrapositive proof.

Let $x, y \in \mathbb{Z}$. If $3 x-5 y$ is odd, then x and y do not have the same parity.
8. (10 points) Prove the statement below using a proof by contradiction.

Let $a, b \in \mathbb{Z}$. If $4 \mid\left(a^{2}+b^{2}\right)$, then a is even or b is even.

