

1. (20 points) Disprove the following two statements.
(a) For all sets A, B and C, if $A \nsubseteq B$ and $B \nsubseteq C$, then $A \nsubseteq C$.

We must prove the negation of the statement: There exist sets A, B and C such that $A \nsubseteq B, B \nsubseteq C$, and $A \subseteq C$. Thus, a simple counter-example is sufficient.

Example: Let $A=\{1\}, B=\{2,3\}$ and $C=\{1,2\}$. Observe that $A \nsubseteq B, B \nsubseteq C$, and $A \subseteq C$.
(b) There exists a natural number n such that $3 \mid n$ and $3 \mid(n+1)$.

We must prove the negation of the statement: For every natural number n either $3 \nmid n$ or $3 \nmid(n+1)$.
(direct) Let n be an arbitrary natural number. If $3 \nmid n$, then the statement holds. If $3 \mid n$, then there exists an integer k such that $3 k=n$. Thus, $n+1=3 k+1$. Now $3 \nmid(3 k+1)$ since $3 \nmid 1$.
(by contradiction) Suppose n is a natural number such that $3 \mid n$ and $3 \mid(n+1)$. Thus, there exist integers k and ℓ such that $3 k=n$ and $3 \ell=n+1$. Thus, we have the contradiction that

$$
1=(n+1)-n=3 \ell-3 k=3(\ell-k)
$$

implies $3 \nmid 1$. Thus, no such n can exist.
2. (10 points) Prove that for all integers $n \geq 2$,

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} .
$$

Proof: (by induction on n)
Base Step: Let $n=2$. Observe that $\left(1-\frac{1}{2^{2}}\right)=\frac{3}{4}=\frac{2+1}{2 \cdot 2}$. Thus, the proposition holds for $n=2$.

Inductive Step: Let $k \in \mathbb{N}$ such that $k \geq 2$. Suppose that

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{k^{2}}\right)=\frac{k+1}{2 k} .
$$

We must show that

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{k^{2}}\right)\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{k+2}{2 k+2} .
$$

Observe

$$
\begin{aligned}
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{(k+1)^{2}}\right) & =\left[\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{k^{2}}\right)\right]\left(1-\frac{1}{(k+1)^{2}}\right) \\
& =\left[\frac{k+1}{2 k}\right]\left(1-\frac{1}{(k+1)^{2}}\right) \\
& =\left(\frac{k+1}{2 k}\right)\left(\frac{(k+1)^{2}-1}{(k+1)^{2}}\right) \\
& =\left(\frac{1}{2 k}\right)\left(\frac{k(k+2)}{(k+1)}\right) \\
& =\frac{k+2}{2 k+2},
\end{aligned}
$$

where the inductive hypothesis is used in line 2 above and the remainder is algebra.
Thus, we have shown that if the proposition holds for index k, then it holds for index $k+1$.

Thus, we have shown by induction that for all integers $n \geq 2$,

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} .
$$

3. (10 points) Suppose A, B and C are sets. Prove that $A \subseteq B$ if and only if $A-B=\emptyset$. (Hint: You may not want to use the method of direct proof here.)

Proof: (Option 1: by contrapositive) Let A, B and C be sets. Observe that the statement $A \subseteq B$ if and only if $A-B=\emptyset$ is equivalent to the statement
$A \nsubseteq B$ if and only if $A-B \neq \emptyset$. We will prove the second equivalent statement.
\Rightarrow : Suppose $A \nsubseteq B$. Thus, by definition, there exists an element $a \in A$ such that $a \notin B$. Thus, $a \in A-B$, and so $A-B \neq \emptyset$.
\Leftarrow : Suppose $A-B \neq \emptyset$. Then, there exists an element $a \in A-B$. Thus, $a \in A$ and $a \notin B$. Thus, $A \nsubseteq B$.

Proof: (Option 2: by contradiction) Let A, B and C be sets.
\Rightarrow : Suppose $A \subseteq B$ and $A-B \neq \emptyset$. Since $A-B \neq \emptyset$, there exists an element, say a, in $A-B$. So, $a \in A$ and $a \notin B$. But this implies that $A \nsubseteq B$, which contradicts the assumption that $A \subseteq B$.
\Leftarrow : Suppose $A-B=\emptyset$ and $A \nsubseteq B$. Since $A \nsubseteq B$, there must exist some $a \in A$, such that $a \notin B$. But if such an element a exists, then $a \in A-B$ which contradicts the assumption that $A-B=\emptyset$.

Proof: (Option 3: direct) Let A, B and C be sets.
\Rightarrow : Suppose $A \subseteq B$. Thus, by the definition of subset, if $a \in A$, then $a \in B$. Thus, there does not exist any element x such that $x \in A$ and $x \notin B$. Thus, there exists no element x such that $x \in A-B$. Thus, $A-B=\emptyset$, which is what we needed to show.
\Leftarrow : Suppose $A-B=\emptyset$. Since the set $A-B$ contains no elements, by the definition of set difference, it follows that there does not exist a single element x such that $x \in A$ and $x \nsim n B$. Hence, for every $a \in A$, it must be that $a \in B$. Thus, by definition of subset, $A \subseteq B$, which is what we wanted to show.
4. (10 points) Use induction to prove that for every integer n such that $n \geq 2,5^{n}+9<6^{n}$.

Proof: (by induction on n)
Base Step: Let $n=2$. Observe that $5^{2}+9=34<36=6^{2}$. Thus, the proposition holds for $n=2$.

Inductive Step: Let k be an integer such that $k \geq 2$. Suppose that $5^{k}+9<6^{k}$. We want to show that $5^{k+1}+9<6^{k+1}$. First note that if $5^{k}+9<6^{k}$, then $5^{k}<6^{k}-9$. Observe

$$
\begin{array}{rlr}
5^{k+1}+9 & =5\left(5^{k}\right)+9 & \\
& <5\left(6^{k}-9\right)+9 & \\
& =5 \cdot 6^{k}-45+9 & \text { by the inductive hypothesis } \\
& <5 \cdot 6^{k}+9 & \\
& <6 \cdot 6^{k}+9 & \\
& =6^{k+1}+9, & \text { because }-45<0 \\
\text { because } 5<6
\end{array}
$$

which is what we wanted to show. Thus, if the proposition holds for k, it holds for $k+1$. Thus, by induction, the proposition is true for all integers $n \geq 2$.
5. (10 points) Prove that for all sets A and $B, \mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. (Note $\mathcal{P}(A)$ is the power set of the set A.)
Proof: Let A and B be sets. Let $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Thus, $X \subseteq A$ or $X \subseteq B$. If $X \subseteq A$, then $X \subseteq A \cup B$. Thus, $X \in \mathcal{P}(A \cup B)$. If $X \subseteq B$, then $X \subseteq A \cup B$. Thus, $X \in \mathcal{P}(A \cup B)$. Thus, we have shown that if $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $X \in \mathcal{P}(A \cup B)$. Thus, it follows that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(5 points extra credit) Suppose $a, b \in \mathbb{N}$. Then $a=l c m(a, b)$ if and only if $b \mid a$.
Proof: Suppose $a, b \in \mathbb{N}$.
\Rightarrow : Suppose $a=l c m(a, b)$. Then $a=b n$ for some integer n. Hence $b \mid a$.
\Leftarrow Suppose $b \mid a$. Then $a=b n$ for some integer n and $a=a \cdot 1$, thus the number a is a common multiple of a and b. So $a \geq \operatorname{lcm}(a, b)$. On the other hand, $l c m(a, b) \geq a$ since any multiple of a is at least $1 \cdot a$.

Since $a \geq \operatorname{lcm}(a, b)$ and $a \leq l c m(a, b)$, it follows that $a=\operatorname{lcm}(a, b)$.

