Your Name

solutions

Your Signature

- 1. (20 points) Disprove the following two statements.
 - (a) For all sets A, B and C, if $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$.

We must prove the negation of the statement: There exist sets A, B and C such that $A \not\subseteq B$, $B \not\subseteq C$, and $A \subseteq C$. Thus, a simple counter-example is sufficient.

Example: Let $A = \{1\}, B = \{2, 3\}$ and $C = \{1, 2\}$. Observe that $A \not\subseteq B, B \not\subseteq C$, and $A \subseteq C$.

(b) There exists a natural number n such that $3 \mid n$ and $3 \mid (n+1)$.

We must prove the negation of the statement: For every natural number n either $3 \nmid n \text{ or } 3 \nmid (n+1).$

(direct) Let n be an arbitrary natural number. If $3 \nmid n$, then the statement holds. If $3 \mid n$, then there exists an integer k such that 3k = n. Thus, n + 1 = 3k + 1. Now $3 \nmid (3k+1)$ since $3 \nmid 1$.

(by contradiction) Suppose n is a natural number such that $3 \mid n$ and $3 \mid (n+1)$. Thus, there exist integers k and ℓ such that 3k = n and $3\ell = n + 1$. Thus, we have the contradiction that

$$1 = (n+1) - n = 3\ell - 3k = 3(\ell - k)$$

implies $3 \nmid 1$. Thus, no such *n* can exist.

2. (10 points) Prove that for all integers $n \ge 2$,

$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdots\left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}.$$

Proof: (by induction on n)

Base Step: Let n = 2. Observe that $\left(1 - \frac{1}{2^2}\right) = \frac{3}{4} = \frac{2+1}{2\cdot 2}$. Thus, the proposition holds for n = 2.

Inductive Step: Let $k \in \mathbb{N}$ such that $k \geq 2$. Suppose that

$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdots\left(1-\frac{1}{k^2}\right) = \frac{k+1}{2k}$$

We must show that

$$\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\left(1 - \frac{1}{4^2}\right)\cdots\left(1 - \frac{1}{k^2}\right)\left(1 - \frac{1}{(k+1)^2}\right) = \frac{k+2}{2k+2}$$

Observe

$$\begin{pmatrix} 1 - \frac{1}{2^2} \end{pmatrix} \begin{pmatrix} 1 - \frac{1}{3^2} \end{pmatrix} \cdots \begin{pmatrix} 1 - \frac{1}{(k+1)^2} \end{pmatrix} = \left[\begin{pmatrix} 1 - \frac{1}{2^2} \end{pmatrix} \begin{pmatrix} 1 - \frac{1}{3^2} \end{pmatrix} \cdots \begin{pmatrix} 1 - \frac{1}{k^2} \end{pmatrix} \right] \begin{pmatrix} 1 - \frac{1}{(k+1)^2} \end{pmatrix}$$

$$= \left[\frac{k+1}{2k} \right] \begin{pmatrix} 1 - \frac{1}{(k+1)^2} \end{pmatrix}$$

$$= \left(\frac{k+1}{2k} \right) \left(\frac{(k+1)^2 - 1}{(k+1)^2} \right)$$

$$= \left(\frac{1}{2k} \right) \left(\frac{k(k+2)}{(k+1)} \right)$$

$$= \frac{k+2}{2k+2},$$

where the inductive hypothesis is used in line 2 above and the remainder is algebra. Thus, we have shown that if the proposition holds for index k, then it holds for index k+1.

Thus, we have shown by induction that for all integers $n \ge 2$,

$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdots\left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}.$$

3. (10 points) Suppose A, B and C are sets. Prove that $A \subseteq B$ if and only if $A - B = \emptyset$. (Hint: You may not want to use the method of direct proof here.)

Proof: (Option 1: by contrapositive) Let A, B and C be sets. Observe that the statement $A \subseteq B$ if and only if $A - B = \emptyset$ is equivalent to the statement $A \not\subseteq B$ if and only if $A - B \neq \emptyset$. We will prove the second equivalent statement.

⇒: Suppose $A \not\subseteq B$. Thus, by definition, there exists an element $a \in A$ such that $a \notin B$. Thus, $a \in A - B$, and so $A - B \neq \emptyset$.

 \Leftarrow : Suppose $A - B \neq \emptyset$. Then, there exists an element $a \in A - B$. Thus, $a \in A$ and $a \notin B$. Thus, $A \not\subseteq B$.

Proof: (Option 2: by contradiction) Let A, B and C be sets.

⇒: Suppose $A \subseteq B$ and $A - B \neq \emptyset$. Since $A - B \neq \emptyset$, there exists an element, say a, in A - B. So, $a \in A$ and $a \notin B$. But this implies that $A \nsubseteq B$, which contradicts the assumption that $A \subseteq B$.

 \Leftarrow : Suppose $A - B = \emptyset$ and $A \not\subseteq B$. Since $A \not\subseteq B$, there must exist some $a \in A$, such that $a \notin B$. But if such an element a exists, then $a \in A - B$ which contradicts the assumption that $A - B = \emptyset$.

Proof: (Option 3: direct) Let A, B and C be sets.

⇒: Suppose $A \subseteq B$. Thus, by the definition of subset, if $a \in A$, then $a \in B$. Thus, there does not exist any element x such that $x \in A$ and $x \notin B$. Thus, there exists no element x such that $x \in A - B$. Thus, $A - B = \emptyset$, which is what we needed to show.

 \Leftarrow : Suppose $A - B = \emptyset$. Since the set A - B contains no elements, by the definition of set difference, it follows that there does not exist a single element x such that $x \in A$ and $x \not nB$. Hence, for every $a \in A$, it must be that $a \in B$. Thus, by definition of subset, $A \subseteq B$, which is what we wanted to show.

4. (10 points) Use induction to prove that for every integer n such that $n \ge 2, 5^n + 9 < 6^n$.

Proof: (by induction on n) Base Step: Let n = 2. Observe that $5^2 + 9 = 34 < 36 = 6^2$. Thus, the proposition holds for n = 2.

Inductive Step: Let k be an integer such that $k \ge 2$. Suppose that $5^k + 9 < 6^k$. We want to show that $5^{k+1} + 9 < 6^{k+1}$. First note that if $5^k + 9 < 6^k$, then $5^k < 6^k - 9$. Observe

 $5^{k+1} + 9 = 5(5^k) + 9$ $< 5(6^k - 9) + 9$ by the inductive hypothesis $= 5 \cdot 6^k - 45 + 9$ $< 5 \cdot 6^k + 9$ because -45 < 0 $< 6 \cdot 6^k + 9$ because 5 < 6 $= 6^{k+1} + 9,$

which is what we wanted to show. Thus, if the proposition holds for k, it holds for k+1. Thus, by induction, the proposition is true for all integers $n \ge 2$. 5. (10 points) Prove that for all sets A and B, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. (Note $\mathcal{P}(A)$ is the power set of the set A.)

Proof: Let A and B be sets. Let $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Thus, $X \subseteq A$ or $X \subseteq B$. If $X \subseteq A$, then $X \subseteq A \cup B$. Thus, $X \in \mathcal{P}(A \cup B)$. If $X \subseteq B$, then $X \subseteq A \cup B$. Thus, $X \in \mathcal{P}(A \cup B)$. Thus, we have shown that if $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $X \in \mathcal{P}(A \cup B)$. Thus, it follows that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

(5 points extra credit) Suppose a, b ∈ N. Then a = lcm(a, b) if and only if b | a.
Proof: Suppose a, b ∈ N.
⇒: Suppose a = lcm(a, b). Then a = bn for some integer n. Hence b | a.

 \Leftarrow : Suppose $b \mid a$. Then a = bn for some integer n and $a = a \cdot 1$, thus the number a is a common multiple of a and b. So $a \ge lcm(a, b)$. On the other hand, $lcm(a, b) \ge a$ since any multiple of a is at least $1 \cdot a$.

Since $a \ge lcm(a, b)$ and $a \le lcm(a, b)$, it follows that a = lcm(a, b).