Your Name
\square

Your Signature
\square

Problem	Total Points	Score
1	20	
2	10	
3	10	
4	10	
5	10	
extra credit	5	
Total	600	

- You have 1 hour.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (20 points) Disprove the following two statements.
(a) For all sets A, B and C, if $A \nsubseteq B$ and $B \nsubseteq C$, then $A \nsubseteq C$.
(b) There exists a natural number n such that $3 \mid n$ and $3 \mid(n+1)$.
2. (10 points) Prove that for all integers $n \geq 2$,

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} .
$$

3. (10 points) Suppose A, B and C are sets. Prove that $A \subseteq B$ if and only if $A-B=\emptyset$. (Hint: You may not want to use the method of direct proof here.)
4. (10 points) Use induction to prove that for every integer n such that $n \geq 2,5^{n}+9<6^{n}$.
5. (10 points) Prove that for all sets A and $B, \mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. (Note $\mathcal{P}(A)$ is the power set of the set A.)
(5 points extra credit) Suppose $a, b \in \mathbb{N}$. Then $a=\operatorname{lcm}(a, b)$ if and only if $b \mid a$.
