Ch 8 \& Ch 9

1. Recall that we proved the following result in class:

Let $a, b \in \mathbb{N}$. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
2. Let p and q be distinct prime numbers and let c be an integer. Prove that if $p \mid q c$ then $p \mid c$.
3. Prove that the previous statement is false without the hypothesis that p and q are distinct prime numbers.
4. Prove one of DeMorgan's Laws:

Let A and B be sets with universe U. Prove $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
5. We said in class that we can think of the statement $A \subseteq B$ as equivalent to the statement If $a \in A$, then $a \in B$.

Write the contrapositive and the negation of the boxed statements.
6. Prove the proposition below using the contrapositive and the negation.

Proposition: $\{n \in \mathbb{Z}: 4 \mid n\} \subseteq\{n \in \mathbb{Z}: 2 \mid n\}$.

