Ch 8 & Ch 9

1. Recall that we proved the following result in class:

Let $a, b \in \mathbb{N}$. If $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

- 2. Let p and q be distinct prime numbers and let c be an integer. Prove that if $p \mid qc$ then $p \mid c$.
- 3. Prove that the previous statement is false without the hypothesis that p and q are distinct prime numbers.
- 4. Prove one of DeMorgan's Laws: Let A and B be sets with universe U. Prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- 5. We said in class that we can think of the statement $A \subseteq B$ as equivalent to the statement If $a \in A$, then $a \in B$.

Write the contrapositive and the negation of the boxed statements.

6. Prove the proposition below using the contrapositive and the negation.

Proposition: $\{n \in \mathbb{Z} : 4 \mid n\} \subseteq \{n \in \mathbb{Z} : 2 \mid n\}.$