Ch 8 \& Ch 9

1. Recall that we proved the following result in class:

Let $a, b \in \mathbb{N}$. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
2. Let p and q be distinct prime numbers and let c be an integer. Prove that if $p \mid q c$ then $p \mid c$.

Observe that since p and q are distinct primes, $\operatorname{gcd}(p, q)=1$. Since $\operatorname{gcd}(p, q)=1$ and, by hypothesis, $p \mid q c$ where $c \in \mathbb{Z}$, we can apply the result in item 1 above to conclude $p \mid c$.
3. Prove that the previous statement is false without the hypothesis that p and q are distinct prime numbers.

Let p be an odd prime and let $q=2 p$ and $c=2$. Then $q c=4 p$ and $p \mid q c$ but $p \nmid c$.
4. Prove one of DeMorgan's Laws:

Let A and B be sets with universe U. Prove $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
proof: Let A and B be sets with universe U.

First we will show that $\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$.

Let $x \in \overline{A \cup B}$. Then $x \notin A \cup B$. Thus, $x \notin A$ and $x \notin B$. Thus, $x \in \bar{A}$ and $x \in \bar{B}$. Thus, $x \in \bar{A} \cap \bar{B}$. Thus, we have shown that if $\bar{A} \cap \bar{B}$, then $x \in \bar{A} \cap \bar{B}$. Thus, $\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$.

Next we will show that $\bar{A} \cap \bar{B} \subseteq \overline{A \cup B}$
Let $x \in \bar{A} \cap \bar{B}$. Thus, $x \in \bar{A}$ and $x \in \bar{B}$. Thus, $x \notin A$ and $x \notin B$. Thus, $x \notin A \cup B$. Thus, $x \in \overline{A \cup B}$. Thus, we have shown that if $x \in \bar{A} \cap \bar{B}$, then $\bar{A} \cap \bar{B}$. Thus, $\bar{A} \cap \bar{B} \subseteq \overline{A \cup B}$.

Because $\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$ and $\bar{A} \cap \bar{B} \subseteq \overline{A \cup B}$, it follows that $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
5. We said in class that we can think of the statement $A \subseteq B$ as equivalent to the statement If $a \in A$, then $a \in B$.

Write the contrapositive and the negation of the boxed statements.
contrapostive: If $a \notin B$, then $a \notin A$.
negation: There is an element x such that $x \in A$ and $x \notin B$.
6. Prove the proposition below using the contrapositive and the negation.

Proposition: $\{n \in \mathbb{Z}: 4 \mid n\} \subseteq\{n \in \mathbb{Z}: 2 \mid n\}$.

Proof by contrapositive
Let $A=\{n \in \mathbb{Z}: 4 \mid n\}$ and let $B=\{n \in \mathbb{Z}: 2 \mid n\}$. Suppose $x \notin B$. Then, by the definition of B, x is not an integer or x is not divisible by 2 . If x is not an integer, then $x \notin A$. On the other hand, if x is an integer but is not divisible by 2 , then x is an odd integer. If x is odd, then x is not divisible by 4 since all integers divisible by 4 are even. Since x is not divisible by $4, x \notin A$.

Thus, in both cases, if $x \notin B$, it follows that $x \notin A$. Thus, we have shown that $A \subseteq B$.

Proof by contradiction

Let $A=\{n \in \mathbb{Z}: 4 \mid n\}$ and let $B=\{n \in \mathbb{Z}: 2 \mid n\}$. Suppose $x \in A$ and $x \notin B$. Since $x \in A, x$ is divisible by 4 and there exists an integer k such that $4 k=x$. Thus, $x=2(2 k)$ where $2 k \in \mathbb{Z}$ demonstrating that x is even.

Since $x \notin B$, it follows that $2 \nmid x$. Thus, x is odd.

Now we have the contradiction that x is both even and odd. Thus it cannot be the case that $x \in A$ and $x \notin B$. Thus, we have shown that $A \subseteq B$.

