Wednesday 16 March

1. Let A, B, and C be sets. If $A \times C=B \times C$, then $A=B$.

Proof: Let A, B, and C be sets and assume $A \times C=B \times C$.

Let $a \in A$ and let $c \in C$. Thus, by definition $(a, c) \in A \times C$. Since by assumption $A \times C=B \times C$ and $(a, c) \in A \times C$, it follows that $(a, c) \in B \times C$. Since $(a, c) \in B \times C$, it follows that $a \in B$. Thus, we have shown that if $a \in A$, then $a \in B$. Thus, $A \subseteq B$.

If we switch A and B in the previous paragraph, we prove that $B \subseteq A$.

Since $A \subseteq B$ and $B \subseteq A$, it follows that $A=B$.
2. If $x, y \in \mathbb{R}$ and $x^{3}<y^{3}$, then $x<y$.

Proof: Let $x, y \in \mathbb{R}$ and $x^{3}<y^{3}$. Proceed by contradiction and assume that $x \geq y$. Using algebra, we obtain:

$$
\begin{equation*}
0<y^{3}-x^{3}=(y-x)\left(x^{2}+x y+y^{2}\right) . \tag{1}
\end{equation*}
$$

Since $x \geq y$, we know that $y-x \leq 0$. If $y-x=0$, then expression 1 gives:

$$
\begin{equation*}
0<y^{3}-x^{3}=(y-x)\left(x^{2}+x y+y^{2}\right)=0 \cdot\left(x^{2}+x y+y^{2}\right)=0, \tag{2}
\end{equation*}
$$

a contradiction. On the other hand, if $x-y<0$, then expression 1 implies that $x^{2}+x y+y^{2}<0$ in order for the product to be positive. Thus, $x y<0$. So $y<0$ and $x>0$. But this implies $y^{3}<0$ and $x^{3}>0$. But this contradicts the assumption that $y^{3}<x^{3}$.
Since a contradiction is obtained in both cases, we can conclude that $x<y$.
3. For every $n \in \mathbb{N}, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.

Proof: (by induction)
Base Case: If $n=1$, then $\sum_{i=1}^{1} i=1=\frac{1(1+1)}{2}$. Thus, the proposition holds for $n=1$.
Inductive Case: Let $k \in \mathbb{N}$. (So $k \geq 1$.) Suppose that $\sum_{i=1}^{k} i=\frac{k(k+1)}{2}$. We must show that $\sum_{i=1}^{k+1} i=\frac{(k+1)(k+2)}{2}$.
Observe

$$
\begin{array}{rlr}
\sum_{i=1}^{k+1} i & =1+2+3+\cdots+(k-1)+k+(k+1) & \text { expanding summation notation } \\
& =(1+2+3+\cdots+(k-1)+k)+(k+1) & \text { associativity of addition } \\
& =\left(\sum_{i=1}^{k} i\right)+(k+1) & \text { contracting summation notation } \\
& =\left(\frac{k(k+1)}{2}\right)+(k+1) & \\
& =\left(\frac{k(k+1)}{2}\right)+\frac{2(k+1)}{2} & \text { inductive hypothesis } \\
& =\left(\frac{(k+2)(k+1)}{2}\right),
\end{array}
$$

which is what we wanted to show.
If follows by induction that for every $n \in \mathbb{N}, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.

