Your Name

Solutions

Problem	Total Points	Score
1	15	
2	12	
3	16	
4	18	
5	12	
6	12	
6	15	
Extra Credit	100	
Total		

- This test is closed book.
- A student may bring one 8×11 sheet of paper with writing on the front.
- No calculator is needed since all answers can be left in "choose" form. (So $6^{8}\binom{10}{4}$ is an acceptable answer.)
- In order to receive full credit, you must show your work.
- Raise your hand if you have a question.

1. (15 points) After a day of skiing, a family of 4 throws their mittens into a bin. The next day, each member grabs two mittens (one right-hand and one left-hand). Count the number of ways this can happen such that not a single member of the family has both of their own mittens. (Use Inclusion-Exclusion.)
answer: We are trying to avoid having a person get both of their own mittens. So we label the family members: $1,2,3,4$ and let p_{i} be the property that person i grabs their own pair of mittens. Thus, the number of ways the four can grab mittens such that none grab their own pair is $N_{=(\emptyset)}$.

We will count each "part" of the inclusion-exclusion formula separately, then put it all together at the end.

The number of ways to distribute the mittens with no restrictions is

$$
N_{\geq}(\emptyset)=(4!)^{2},
$$

since there are 4 ! to distribute the left-hand mittens and 4 ! ways to distribute the right-hand mittens.

The number of ways to distribute the mittens such that person i gets their own pair is:

$$
N_{\geq}\left(p_{i}\right)=(3!)^{2}
$$

and there are 4 different choices for i.

The number of ways to distribute the mittens such that both person i and person j gets their own pair is:

$$
N_{\geq}\left(p_{i} p_{j}\right)=(2!)^{2}
$$

and there are $\binom{4}{2}=6$ different choices for pairs of family members i and j.
The number of ways to distribute the mittens such that person i, person j and person k gets their own pair is:

$$
N_{\geq}\left(p_{i} p_{j} p_{k}\right)=(1!)^{2}
$$

and there are $\binom{4}{4}=4$ different choices for i, j and k.

The number of ways to distribute the mittens such that every member of the family gets their own pair is

$$
N_{\geq}\left(p_{i} p_{j} p_{k} p_{\ell}\right)=1
$$

and there is only one way to chose the whole family.

Now a straight application of inclusion-exclusion gives

$$
N_{=}(\emptyset)=(4!)^{2}-4 \cdot(3!)^{2}+6 \cdot(2!)^{2}-4 \cdot(1!)^{2}+1 .
$$

2. (12 points)
(a) Find the coefficient of x^{20} in $\left(x^{3}+x^{4}+x^{5}+x^{6}+\cdots\right)^{4}$

Answer:

$$
\begin{aligned}
\llbracket\left(x^{3}+x^{4}+x^{5}+x^{6}+\cdots\right)^{4} \rrbracket_{x^{20}} & =\llbracket x^{12}\left(1+x+x^{2}+x^{3}+\cdots\right)^{4} \rrbracket_{x^{20}} \\
& =\llbracket\left(1+x+x^{2}+x^{3}+\cdots\right)^{4} \rrbracket_{x^{8}} \\
& =\left(\binom{4}{8}\right)=\binom{8+4-1}{8}=\binom{11}{8}
\end{aligned}
$$

(b) Find $\llbracket \frac{a}{b+c x} \rrbracket_{x^{k} / k!}$

$$
\begin{aligned}
\llbracket \frac{a}{b+c x} \rrbracket_{x^{k} / k!} & =\frac{a}{b} \llbracket \frac{1}{1-\left(\frac{-c x}{b}\right)} \rrbracket_{x^{k} / k!} \\
& =\frac{a}{b}\left(\frac{-c}{b}\right)^{k} k!
\end{aligned}
$$

3. (16 points) In each case, find a concise ordinary generating function for answering the question and also identify what coefficient you need.
(a) How many solutions to $z_{1}+z_{2}+z_{3}=20$ are possible such that each z_{i} is an integer satisfying $1 \leq z_{1} \leq 5,0 \leq z_{2}$ and $0 \leq z_{3}$?

Answer: Generating function:

$$
\left(x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)^{2}=\frac{x\left(1-x^{5}\right)}{(1-x)^{3}}
$$

coefficient: x^{20}
(b) How many ways to make change for a dollar using only nickels, dimes and quarters?

Answer: Generating function:
$\left(1+x^{5}+x^{10}+x^{15}+\cdots\right)\left(1+x^{10}+x^{20}+x^{30}+\cdots\right)\left(1+x^{25}+x^{50}+x^{75}+\cdots\right)=\frac{1}{\left(1-x^{5}\right)\left(1-x^{10}\right)\left(1-x^{25}\right)}$
coefficient: x^{100}
4. (15 points) Solve the recurrence relation below using the generating function technique.

$$
a_{0}=1 \quad \text { and } \quad a_{n}=3 a_{n-1}+2^{n}, \text { for } n \geq 1
$$

Answer: Let $f(x)=\sum_{i=0}^{\infty} a_{n} x^{n}$ be the ordinary generating function for the sequence.
Using the recurrence we obtain: $a_{n} x^{n}=3 a_{n-1} x^{n}+2^{n} x^{n}$, for $n \geq 1$.

Summing across all valid choices of n, we obtain

$$
\sum_{i=1}^{\infty} a_{i} x^{i}=\sum_{i=1}^{\infty} 3 a_{i-1} x^{n}+\sum_{i=1}^{\infty} 2^{n} x^{n} .
$$

Using the definition of $f(x)$ to substitute in, we obtain

$$
f(x)-1=3 x f(x)+\frac{1}{1-2 x}-1 .
$$

Solve for $f(x): f(x)=\frac{1}{(1-3 x)(1-2 x)}=\frac{3}{1-3 x}-\frac{2}{1-2 x}$.
Now,

$$
a_{n}=\llbracket f(x) \rrbracket_{a_{n}}=\llbracket \frac{3}{1-3 x} \rrbracket_{a_{n}}-\llbracket \frac{2}{1-2 x} \rrbracket_{a_{n}}=3\left(3^{n}\right)-2\left(2^{n}\right)=3^{n+1}-2^{n+1} .
$$

5. (12 points) Let $k \geq 2$. Prove that if $\delta(G)=k$, then G contains a cycle on at least $k+1$ vertices.
6. (12 points) Draw the tree with Prüfer sequence ($7,5,10,5,1,8,10,7$).

7. (15 points) Let G be the graph pictured below.

(a) Determine the chromatic number of G. Explain your answer.

From the coloring above, we know $\chi(G) \leq 3$. On the other hand, vertices a, b and c form a K_{3} and so $\chi(G) \geq 3$. Thus, $\chi(G)=3$.
(b) Find $p(G, k)$, the chromatic polynomial of G. Explain your answer.

Claim: $p(G, k)=k(k-1)(k-2)(k-1)(k-1)(k-1)$
POC: Apply the multiplication principle to the vertices in alphabetical order. (That is, there are k choices to color vertex a and $k-1$ choices for vertex b since b must have a different color than $a \ldots$ and so forth.)

Extra Credit: (6 points)

1. Give an example of a graph G such that $\chi(G)=4$ but G has no subgraph isomorphic to K_{4}.

Any wheel constructed from an odd cycle will do.
2. Use your answer from part a to construct a graph G such that $\chi(G)=5$ but G has no subgraph isomorphic to K_{4}. (Hint: You might want to start with 4 disjoint copies of your graph from part (a).)

Let W be the wheel on 6 vertices made by joining a vertex to a 5 cycle. Make 4 copies of $W: W_{1}$, W_{2}, W_{3} and W_{4}. Observe that for each W_{i} there are 6 distinct vertices and thus 6^{4} ways of picking one vertex from each W_{i}.

Add an additional 6^{4} vertices such that each is adjacent to one vertex in each W_{i} and each is adjacent to a different set.

