Your Name
\square

Problem	Total Points	Score
1	15	
2	12	
3	16	
4	18	
5	12	
6	12	
6	15	
Extra Credit	100	
Total		

- This test is closed book.
- A student may bring one 8×11 sheet of paper with writing on the front.
- No calculator is needed since all answers can be left in "choose" form. (So $6^{8}\binom{10}{4}$ is an acceptable answer.)
- In order to receive full credit, you must show your work.
- Raise your hand if you have a question.

1. (15 points) After a day of skiing, a family of 4 throws their mittens into a bin. The next day, each member grabs two mittens (one right-hand and one left-hand). Count the number of ways this can happen such that not a single member of the family has both of their own mittens. (Use Inclusion-Exclusion.)
2. (12 points)
(a) Find the coefficient of x^{20} in $\left(x^{3}+x^{4}+x^{5}+x^{6}+\cdots\right)^{4}$
(b) Find $\llbracket \frac{a}{b+c x} \rrbracket_{x^{k} / k!}$
3. (16 points) In each case, find a concise ordinary generating function for answering the question and also identify what coefficient you need.
(a) How many solutions to $z_{1}+z_{2}+z_{3}=20$ are possible such that each z_{i} is an integer satisfying $1 \leq z_{1} \leq 5,0 \leq z_{2}$ and $0 \leq z_{3}$?
(b) How many ways to make change for a dollar using only nickels, dimes and quarters?
4. (18 points) Solve the recurrence relation below using the generating function technique.

$$
a_{0}=1 \quad \text { and } \quad a_{n}=3 a_{n-1}+2^{n}, \text { for } n \geq 1
$$

Answer: Let $f(x)=\sum_{i=0}^{\infty} a_{n} x^{n}$ be the ordinary generating function for the sequence.
5. (12 points) Prove that if $\delta(G)=k$, then G contains a cycle on at least $k+1$ vertices.
6. (12 points) Draw the tree with Prüfer sequence ($7,5,10,5,1,8,10,7$).
7. (15 points) Let G be the graph pictured below.

(a) Determine the chromatic number of G. Explain your answer.
(b) Find $p(G, k)$, the chromatic polynomial of G. Explain your answer.

Extra Credit: (6 points)

1. Give an example of a graph G such that $\chi(G)=4$ but G has no subgraph isomorphic to K_{4}.
2. Use your answer from part a to construct a graph G such that $\chi(G)=5$ but G has no subgraph isomorphic to K_{4}. (Hint: You might want to start with 4 disjoint copies of your graph from part (a).)
