MATH 320: Topics in Combinatorics

Fall 2019
Midterm I Review

Logistics: The Midterm will be one hour long and will include material from Chapters 1 and 2. No books, notes, or other aides allowed.

Chapters 1 and 2:

- vocabulary: lists, words, passwords, binary number, ternary number, repetition allowed, repetition not allowed, power set, set of subsets, permutation, k-permutation, combination, committee, multiset, Cartesian product of two sets, relation from set A to set B, function from set A to set B, bijection, one-to-one correspondence, one-to-one, onto, domain, codomain, range, function composition, inverse relation/function, equivalence relation, equivalence classes, congruence modulo n, divisibility, partition of a set, blocks of a partition, circular arrangements, k-to-one function, Stirling numbers of the second kind, Bell numbers, integer partitions and parts of an integer partition
- notation: $[n],(n)_{k},\binom{n}{k},\left(\binom{n}{k}\right), \operatorname{rng}(f), \operatorname{dom}(f), \operatorname{co}(f), S(n, k), P(n, k)$
- useful theorems/results: product principle, sum principle, the bijection principle, inherited properties, equivalence principle, pigeonhole principle (recall the most general versions Theorem 1.5.4 and Theorem 1.5.6), the Binomial Theorem,,
- tasks/problems:
- Know the denominations and suits of a standard deck of 52 cards.
- Counting the complement.
- "Best of $2 n-1$ " series.
- Checking that a function is well-defined.
- How to determine equivalence classes.
- The relationship between equivalence classes on the set A and partitions of the set A.
- Know how to give a bijective proof or a combinatorial proof.
- Counting using the language of distributions.
- Be able to fill out the chart on page 81.
- things you won't be asked
- to recall the great number of combinatorial identities
- the formulas on pages 68 and 69 for how to calculate Bell numbers and Stirling numbers.

