
Math 320 Combinatorics Test 2 – Solutions Fall 2015

1. (20 points) A soccer team will play 15 matches. The list TWWWLWWWLWWLLTT is
the record of a team that tied the first game, won the next three, then lost and so forth.
This team ended with 8 wins, 4 losses, and 3 ties.

(a) How many ways are there for a team to finish with 8 wins, 4 losses and 3 ties?(
15

8,4,3

)
(b) How many ways in part (a) do not have consecutive losses?

Arrange the wins and ties:
(
11
8,3

)
.

Insert losses between the wins and ties. There are 12 available slots:
(
12
4

)
Ans:

(
11
8,3

)
·
(
12
4

)
(c) How many ways in part (a) have a longest winning streak of 6 games.

There must be a block of 6 W’s. The remaining two W’s are either together or separate.
Then we proceed as in part b. That is, arrange the losses and ties, then place the blocks
of wins.
Ans:

(
7
4

)
(8 · 7 + 8 ·

(
7
2

)
)

2. (10 points) Draw the tree with Prüfer code 1, 4, 7, 2, 4. Everyone got this right.

3. (10 points) Determine χ(G) and show that your answer is correct. We will show that
χ(G) = 4.
Show χ(G) ≥ 4. Since the outer cycle has an odd number of vertices, it requires 3 colors.
Since the interior vertex is adjacent to all the vertices on the outer cycle, it requires a fourth
color.
Show χ(G) ≥ 4. Color outer cycle 1,2,1,2,1,2,3. Color last vertex 4.

4. (10 points) Let G = Kr,s, the complete bipartite graph such that r and s are both at least
2 and assume the vertices of G are labeled.

(a) Count the number of C4’s in G.
This is a bipartite graph so we choose 2 vertices from the set with r vertices and 2 from
the set with s vertices. There is only one way to order them in a C4.
Ans:

(
r
2

)(
s
2

)
(b) Count the number of distinct C5’s in G.

Ans: 0. It’s bipartite. No odd cycles at all.

(c) Count the number of distinct C ′6s in G. Similar to part (a). Choose the 6 vertices:(
r
3

)(
s
3

)
.

Then count the number of ways to arrange them. Start arbitrarily at r1. Choose the
two vertices next to r1 in

(
3
2

)
ways. (Now all but two positions on the cycle are fixed.)

Choose the location of r2 in 2 ways.
Answer:

(
r
3

)(
s
3

)
· 3 · 2

5. (15 points) Solve the recurrence relation below using generating functions.

a0 = 1, a1 = 2, an = 5an−1 − 4an−2 for n ≥ 2.



Math 320 Combinatorics Test 2 – Solutions Fall 2015

solution: Let f(x) =
∑∞

k=0 akx
k be the ordinary generating function for {ak}k≥0. Applying

the recurrence we get: anx
n = 5an−1x

n − 4an−2x
n, for n ≥ 2. Summing across all n ≥ 2, we

find:

∑
k≥2

anx
n =

∑
k≥2

5an−1x
n −

∑
k≥2

4an−2x
n.

Now, LHS=
∑

k≥2 anx
n = f(x)− a0 − a1x = f(x)− 1− 2x.

Further,

RHS =
∑
k≥2

5an−1x
n −

∑
k≥2

4an−2x
n

= 5x
∑
k≥2

an−1x
n−1 − 4x2

∑
k≥2

an−2x
n−2

= 5x(f(x)− 1)− 4x2(f(x))

= (5x− 4x2)f(x)− 5x.

(1)

Putting the LHS=RHS and solving for f(x), we get: f(x) = 1−3x
1−5x+4x2 = 1−3x

(1−4x)(1−x) .

[Partial Fractions Approach] We find 1−3x
(1−4x)(1−x) = 1/3

1−4x + 2/3
1−x . So,

Jf(x)Kxn =
1

3
J

1

1− 4x
Kxn +

2

3
J

1

1− x
Kxn =

4n + 2

3
.

[Convolution Approach]

Jf(x)Kxn = J
1

(1− 4x)(1− x)
Kxn − 3J

1

(1− 4x)(1− x)
Kxn−1

=
n∑

i=0

4i 1n−i − 3
n−1∑
i=0

4i 1n−1−i

=
4n+1 − 1

4− 1
− 3

(
4n − 1

4− 1

)
= (4/3)4n − (1/3)− 4n + 1

=
4n + 2

3

(2)

6. (20 points) In retrospect, I wish I had added the word NONTRIVIAL to both problems. I
will answer with this added requirement.

(a) Show that there exist r-regular, λ-balanced designs that are not k-uniform.

Example: {1, 2, 3; 4, 5, 6; 1, 4; 1, 5; 1, 6; 2, 4; 2, 5; 2, 6; 3, 4; 3, 5; 3, 6} (Obviously, you
can trivially construct examples with 1-blocks.)
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(b) Prove that every k-uniform, λ-balanced design is r-regular. (This does require λ ≥ 1
or disallowing the use of 1-blocks.)

Given a k-uniform, λ-balanced design on v varieties with b blocks, let v be a randomly
chosen variety and assume it appears in n blocks. Then, the total number of pairings
of v can be counted in two ways:
(1) (# of blocks containing v)(# other varieties in the block with v)=(k − 1)n
or
(2) (# of other varieties)(# times a variety is paired with v)=(v − 1)λ).
So n = (v − 1)λ/(k − 1).
Since v, k, and λ are fixed, so is n.

7. (15 points) On page 158 in Theorem 4.2.8, our text proves the identity 2Fn = Fn+1 + Fn−2
for n ≥ 2 where Fn is the nth Fibonacci number. The proof technique is induction. Prove
the same identity using a combinatorial proof involving tilings of a 1 × n board (and/or
1× (n+ 1) board and/or 1× (n− 2) board) with 1- and 2-tiles.

Solution

Let S be the set of all tilings of an n-board and let T be the set of all tilings of an n + 1
board together with all tilings of an n− 2 board.

We know |T | = Fn+1 + Fn−2.

Now we will count T again after partitioning it into two sets: T1 is the set of tilings of an
n + 1 board ending with a 1-tile and T2 = T1. (Hence, T2 contains all tilings of the n − 2
board along with all tilings of the n+1 board ending in a 2-tile. Note that is is now sufficient
to show that |T1| = |S| = Fn and |T2| = |S| = Fn.)

Since every tiling in T1 is a tiling of an n-board upon removal of the 1-tile, and every tiling
of an n-board can be extended to a tiling of an n+1-board by adding a 1-tile, |T1| = |S| = Fn.

Similarly, the number of tilings of an (n − 2)-board is equal to the number of tilings of an
n-board ending in a 2-tile. (Think of partitioning S into sets S1 and S2 where tilings in S1

end with a 1-tile and tilings in S2 end with a 2-tile. We just argued that the set of tilings of
an (n− 2)-board is equal to |S2.|)

Finally, given a tiling of an (n+1)-board ending with a 2-tile, remove the last tile and replace
it with a 1-tile to give rise to a tiling of an n-board ending in a 1-tile. Since this process
can be reversed, the number of tilings of an (n + 1)-board ending with a 2-tile equals the
number of tilings of an n-board ending with a 1 tile (or using earlier notation |S1|.)

So Fn = |S| = |S1|+ |S2| = |T2.|


