1. (20 points) A soccer team will play 15 matches. The list $T W W W L W W W L W W L L T T$ is the record of a team that tied the first game, won the next three, then lost and so forth. This team ended with 8 wins, 4 losses, and 3 ties.
(a) How many ways are there for a team to finish with 8 wins, 4 losses and 3 ties? $\binom{15}{8,4,3}$
(b) How many ways in part (a) do not have consecutive losses?

Arrange the wins and ties: $\binom{11}{8,3}$.
Insert losses between the wins and ties. There are 12 available slots: $\binom{12}{4}$
Ans: $\binom{11}{8,3} \cdot\binom{12}{4}$
(c) How many ways in part (a) have a longest winning streak of 6 games.

There must be a block of 6 W's. The remaining two W's are either together or separate.
Then we proceed as in part b. That is, arrange the losses and ties, then place the blocks of wins.
Ans: $\binom{7}{4}\left(8 \cdot 7+8 \cdot\binom{7}{2}\right)$
2. (10 points) Draw the tree with Prüfer code $1,4,7,2$, 4 . Everyone got this right.
3. (10 points) Determine $\chi(G)$ and show that your answer is correct. We will show that $\chi(G)=4$.
Show $\chi(G) \geq 4$. Since the outer cycle has an odd number of vertices, it requires 3 colors. Since the interior vertex is adjacent to all the vertices on the outer cycle, it requires a fourth color.
Show $\chi(G) \geq 4$. Color outer cycle $1,2,1,2,1,2,3$. Color last vertex 4 .
4. (10 points) Let $G=K_{r, s}$, the complete bipartite graph such that r and s are both at least 2 and assume the vertices of G are labeled.
(a) Count the number of C_{4} 's in G.

This is a bipartite graph so we choose 2 vertices from the set with r vertices and 2 from the set with s vertices. There is only one way to order them in a C_{4}.
Ans: $\binom{r}{2}\binom{s}{2}$
(b) Count the number of distinct C_{5} 's in G.

Ans: 0. It's bipartite. No odd cycles at all.
(c) Count the number of distinct $C_{6}^{\prime} s$ in G. Similar to part (a). Choose the 6 vertices: $\binom{r}{3}\binom{s}{3}$.
Then count the number of ways to arrange them. Start arbitrarily at r_{1}. Choose the two vertices next to r_{1} in $\binom{3}{2}$ ways. (Now all but two positions on the cycle are fixed.)
Choose the location of r_{2} in 2 ways.
Answer: $\binom{r}{3}\binom{s}{3} \cdot 3 \cdot 2$
5. (15 points) Solve the recurrence relation below using generating functions.

$$
a_{0}=1, a_{1}=2, a_{n}=5 a_{n-1}-4 a_{n-2} \text { for } n \geq 2
$$

SOLUTION: Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ be the ordinary generating function for $\left\{a_{k}\right\}_{k \geq 0}$. Applying the recurrence we get: $a_{n} x^{n}=5 a_{n-1} x^{n}-4 a_{n-2} x^{n}$, for $n \geq 2$. Summing across all $n \geq 2$, we find:

$$
\sum_{k \geq 2} a_{n} x^{n}=\sum_{k \geq 2} 5 a_{n-1} x^{n}-\sum_{k \geq 2} 4 a_{n-2} x^{n}
$$

Now, LHS $=\sum_{k \geq 2} a_{n} x^{n}=f(x)-a_{0}-a_{1} x=f(x)-1-2 x$.

Further,

$$
\begin{align*}
R H S & =\sum_{k \geq 2} 5 a_{n-1} x^{n}-\sum_{k \geq 2} 4 a_{n-2} x^{n} \\
& =5 x \sum_{k \geq 2} a_{n-1} x^{n-1}-4 x^{2} \sum_{k \geq 2} a_{n-2} x^{n-2} \tag{1}\\
& =5 x(f(x)-1)-4 x^{2}(f(x)) \\
& =\left(5 x-4 x^{2}\right) f(x)-5 x
\end{align*}
$$

Putting the LHS $=$ RHS and solving for $f(x)$, we get: $f(x)=\frac{1-3 x}{1-5 x+4 x^{2}}=\frac{1-3 x}{(1-4 x)(1-x)}$.
[Partial Fractions Approach] We find $\frac{1-3 x}{(1-4 x)(1-x)}=\frac{1 / 3}{1-4 x}+\frac{2 / 3}{1-x}$. So,

$$
\llbracket f(x) \rrbracket_{x^{n}}=\frac{1}{3} \llbracket \frac{1}{1-4 x} \rrbracket_{x^{n}}+\frac{2}{3} \llbracket \frac{1}{1-x} \rrbracket_{x^{n}}=\frac{4^{n}+2}{3}
$$

[Convolution Approach]

$$
\begin{align*}
\llbracket f(x) \rrbracket_{x^{n}} & =\llbracket \frac{1}{(1-4 x)(1-x)} \rrbracket_{x^{n}}-3 \llbracket \frac{1}{(1-4 x)(1-x)} \rrbracket_{x^{n-1}} \\
& =\sum_{i=0}^{n} 4^{i} 1^{n-i}-3 \sum_{i=0}^{n-1} 4^{i} 1^{n-1-i} \\
& =\frac{4^{n+1}-1}{4-1}-3\left(\frac{4^{n}-1}{4-1}\right) \tag{2}\\
& =(4 / 3) 4^{n}-(1 / 3)-4^{n}+1 \\
& =\frac{4^{n}+2}{3}
\end{align*}
$$

6. (20 points) In retrospect, I wish I had added the word NONTRIVIAL to both problems. I will answer with this added requirement.
(a) Show that there exist r-regular, λ-balanced designs that are not k-uniform.

Example: $\{1,2,3 ; 4,5,6 ; 1,4 ; 1,5 ; 1,6 ; 2,4 ; 2,5 ; 2,6 ; 3,4 ; 3,5 ; 3,6\}$ (Obviously, you can trivially construct examples with 1 -blocks.)
(b) Prove that every k-uniform, λ-balanced design is r-regular. (This does require $\lambda \geq 1$ or disallowing the use of 1 -blocks.)
Given a k-uniform, λ-balanced design on v varieties with b blocks, let v be a randomly chosen variety and assume it appears in n blocks. Then, the total number of pairings of v can be counted in two ways:
(1) (\# of blocks containing $v)(\#$ other varieties in the block with $v)=(k-1) n$ or
(2) (\# of other varieties) (\# times a variety is paired with $v)=(v-1) \lambda)$.

So $n=(v-1) \lambda /(k-1)$.
Since v, k, and λ are fixed, so is n.
7. (15 points) On page 158 in Theorem 4.2 .8 , our text proves the identity $2 F_{n}=F_{n+1}+F_{n-2}$ for $n \geq 2$ where F_{n} is the nth Fibonacci number. The proof technique is induction. Prove the same identity using a combinatorial proof involving tilings of a $1 \times n$ board (and/or $1 \times(n+1)$ board and/or $1 \times(n-2)$ board) with 1 - and 2-tiles.

Solution

Let S be the set of all tilings of an n-board and let T be the set of all tilings of an $n+1$ board together with all tilings of an $n-2$ board.

We know $|T|=F_{n+1}+F_{n-2}$.

Now we will count T again after partitioning it into two sets: T_{1} is the set of tilings of an $n+1$ board ending with a 1-tile and $T_{2}=\overline{T_{1}}$. (Hence, T_{2} contains all tilings of the $n-2$ board along with all tilings of the $n+1$ board ending in a 2 -tile. Note that is is now sufficient to show that $\left|T_{1}\right|=|S|=F_{n}$ and $\left|T_{2}\right|=|S|=F_{n}$.)

Since every tiling in T_{1} is a tiling of an n-board upon removal of the 1-tile, and every tiling of an n-board can be extended to a tiling of an $n+1$-board by adding a 1-tile, $\left|T_{1}\right|=|S|=F_{n}$.

Similarly, the number of tilings of an $(n-2)$-board is equal to the number of tilings of an n-board ending in a 2-tile. (Think of partitioning S into sets S_{1} and S_{2} where tilings in S_{1} end with a 1-tile and tilings in S_{2} end with a 2-tile. We just argued that the set of tilings of an $(n-2)$-board is equal to $\left.\left|S_{2}.\right|\right)$

Finally, given a tiling of an ($n+1$)-board ending with a 2 -tile, remove the last tile and replace it with a 1-tile to give rise to a tiling of an n-board ending in a 1-tile. Since this process can be reversed, the number of tilings of an $(n+1)$-board ending with a 2 -tile equals the number of tilings of an n-board ending with a 1 tile (or using earlier notation $\left|S_{1}\right|$.)

So $F_{n}=|S|=\left|S_{1}\right|+\left|S_{2}\right|=\left|T_{2}.\right|$

