MaTH 320 ComBINATORICS T EST 2 — SOLUTIONS FALL 2015

1. (20 points) A soccer team will play 15 matches. The list TWWW LW WW LWW LLTT is
the record of a team that tied the first game, won the next three, then lost and so forth.
This team ended with 8 wins, 4 losses, and 3 ties.

(a)
(b)

How many ways are there for a team to finish with 8 wins, 4 losses and 3 ties?
15

(8,4,3)

How many ways in part (a) do not have consecutive losses?

Arrange the wins and ties: (;é)

Insert losses between the wins and ties. There are 12 available slots: (142)

L (1) | (12
Ans: (8,3) ‘ (4)
How many ways in part (a) have a longest winning streak of 6 games.

There must be a block of 6 W’s. The remaining two W’s are either together or separate.
Then we proceed as in part b. That is, arrange the losses and ties, then place the blocks

of wins.

Ans: (D(S -T+8- (;))

2. (10 points) Draw the tree with Priifer code 1,4,7,2,4. Everyone got this right.

3. (10 points) Determine x(G) and show that your answer is correct. We will show that
X(G) = 4.
Show x(G) > 4. Since the outer cycle has an odd number of vertices, it requires 3 colors.
Since the interior vertex is adjacent to all the vertices on the outer cycle, it requires a fourth
color.
Show x(G) > 4. Color outer cycle 1,2,1,2,1,2.3. Color last vertex 4.

4. (10 points) Let G = K, 4, the complete bipartite graph such that r and s are both at least
2 and assume the vertices of G are labeled.

(a)

Count the number of Cy4’s in G.

This is a bipartite graph so we choose 2 vertices from the set with r vertices and 2 from
the set with s vertices. There is only one way to order them in a C}.

Ans: (3) (3)

Count the number of distinct C5’s in G.

Ans: 0. It’s bipartite. No odd cycles at all.

Count the number of distinct Cgs in G. Similar to part (a). Choose the 6 vertices:
00,

Then count the number of ways to arrange them. Start arbitrarily at ;. Choose the
two vertices next to 7 in (3) ways. (Now all but two positions on the cycle are fixed.)
Choose the location of r5 in 2 ways.

Answer: (;) (g) -3-2

5. (15 points) Solve the recurrence relation below using generating functions.

ap =1, a1 =2, a, = da,_1 — 4a,_, for n > 2.



MaTH 320 ComBINATORICS T EST 2 — SOLUTIONS FALL 2015

SOLUTION: Let f(z) = >";2, axz® be the ordinary generating function for {a }4>o. Applying
the recurrence we get: a,z" = 5a,_12" — 4a,_sx™, for n > 2. Summing across all n > 2, we
find:

Z a,r" = Z 5a,_1x" — Z 4a,_ox".

k>2 k>2 k>2

Now, LHS=}_, ., a,2" = f(z) —ap — a1z = f(z) — 1 — 2z,

Further,
RHS = Z 5a,_1x" — Z 4a,,_ox"
fe>2 fe>2
= by Z A"t — 42? Z Ay 2 (1)
k>2 k>2
= 5z(f(x) — 1) — 4a*(f(x))
= (bx — 42”) f(x) — 5.
Putting the LHS=RHS and solving for f(z), we get: f(z) = 1_15;_35%2 = (l_i;)?g_x).
[PARTIAL FRACTIONS APPROACH] We find g—=%— = By 28 g,
1 1 2.1 4n + 2
ke = 5lr=g b + 5l = 5

[CONVOLUTION APPROACH]

-1

1 1
Vol =lr—mya ol la—ma ol

n n—1
_ 241 1t 3241 1n—1—i
=0 =0

grtl —1 4" —1 (2)
a1 _3(4—1>
= (4/3)4" — (1/3) — 4" + 1
442
-3

6. (20 points) In retrospect, I wish I had added the word NONTRIVIAL to both problems. I
will answer with this added requirement.

(a) Show that there exist r-regular, A-balanced designs that are not k-uniform.

Example: {1,2,3; 4,5,6; 1,4; 1,5; 1,6; 2,4; 2,5; 2,6; 3,4; 3,5; 3,6} (Obviously, you
can trivially construct examples with 1-blocks.)
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(b) Prove that every k-uniform, A-balanced design is r-regular. (This does require A > 1
or disallowing the use of 1-blocks.)

Given a k-uniform, A-balanced design on v varieties with b blocks, let v be a randomly
chosen variety and assume it appears in n blocks. Then, the total number of pairings
of v can be counted in two ways:

(1) (# of blocks containing v)(# other varieties in the block with v)=(k — 1)n

or

(2) (# of other varieties)(# times a variety is paired with v)=(v — 1)\).
Son=(v—1\(k—-1).

Since v, k, and \ are fixed, so is n.

7. (15 points) On page 158 in Theorem 4.2.8, our text proves the identity 2F, = F,,.q1 + F,_»
for n > 2 where F), is the nth Fibonacci number. The proof technique is induction. Prove

the same identity using a combinatorial proof involving tilings of a 1 x n board (and/or
1 x (n+ 1) board and/or 1 x (n — 2) board) with 1- and 2-tiles.

SOLUTION

Let S be the set of all tilings of an n-board and let T" be the set of all tilings of an n + 1
board together with all tilings of an n — 2 board.

We know |T| = Fpy1 + Foo.

Now we will count 7' again after partitioning it into two sets: 77 is the set of tilings of an
n + 1 board ending with a 1-tile and T, = T;. (Hence, T, contains all tilings of the n — 2
board along with all tilings of the n+ 1 board ending in a 2-tile. Note that is is now sufficient
to show that |T1| = |S| = F,, and |T3| = |S| = F,..)

Since every tiling in 77 is a tiling of an n-board upon removal of the 1-tile, and every tiling
of an n-board can be extended to a tiling of an n+1-board by adding a 1-tile, |T1| = |S| = F,.

Similarly, the number of tilings of an (n — 2)-board is equal to the number of tilings of an
n-board ending in a 2-tile. (Think of partitioning S into sets S; and S, where tilings in Sy
end with a 1-tile and tilings in S5 end with a 2-tile. We just argued that the set of tilings of
an (n — 2)-board is equal to |Ss.|)

Finally, given a tiling of an (n+1)-board ending with a 2-tile, remove the last tile and replace
it with a 1-tile to give rise to a tiling of an n-board ending in a I-tile. Since this process
can be reversed, the number of tilings of an (n + 1)-board ending with a 2-tile equals the
number of tilings of an n-board ending with a 1 tile (or using earlier notation |S;]|.)

So By = [S] = |S1] + [S2] = 12|



