MATH 663
Solutions
Fall 2017
Midterm

Books and notes are not allowed. There are 9 problems worth a total of 100 points. You have two hours to complete the exam.

1. (10 points) Determine whether or not the sequence $5,5,4,4,3,3,2,1,1$ is graphic. If the sequince is graphic, demonstrate a graph with this degree sequence. If the sequence is not graphic, give a well-defended argument that it is not. Reference any theorems you are using.

Answer: The sequence is graphic

-2: Going through H-H and a typo resulting in wrong answer
-5 : asserting seq. graphical wo any explanation or a graph demonstrat-
ion.
2. (10 points) In the matrix below, $a_{i, j}$ gives the weight of the edge between x_{i} to y_{j} for a complete bipartite graph $K_{5,5}$. Use the Hungarian Algorithm to find a maximum weight matching (or a transversal of maximum sum) in this graph. Prove that your answer is correct by exhibiting a solution to the dual problem.

excess matrix
 $y_{1} y_{2} y_{3} y_{4} y_{5}$
matching w/ max weight
$\frac{\text { edge }}{x_{5} y_{3}} \frac{\text { weight }}{5}$

$$
5+6+4+6+4+1+1+1=28
$$

Sine the cover cost equals the matching
6
total
weight

28
cover cost (in red)

4

6

2
-4 max matching but no whited cover

-8
3. (a) (2 points) Define strong component in a digraph.

A strong component is a maximal strongly connected subyraph.
(b) (3 points) Give an example of a directed graph on 4 vertices with exactly 3 strong components.

or

(c) (2 points) Define a tournament.

A toumament is an orientation of K_{n}.
(d) (3 points) Explain why it is not possible to construct a tournament on 4 vertices with exactly 3 strong components. nontrivial
In a tounament, every'stiong component must contain at least 3 vertices. Since the components cannot all be trivial, one must have 3. But this leaves one very $\overline{\text { tex }}$ for two components.
4. (10 points) Find a tree with Prüfer Code 2,6,1,9,4, , ,9,2.
$n=10$ vedices w/ end vertices: $3,5,5,7,8,10,6,1,4$

5. (a) (2 points) State the definition of a tree.

An acyclic convected graph.
(b) (4 points) Give an example of a tree T on 6 vertices and a set $S \subseteq V(T)$, such that S is a maximal independent set of vertices that is not a maximum independent set of vertices.

(c) (4 points) List all nonisomorphic trees on 6 vertices with maximum degree 3. Do not list any isomorphism class more than once.

6. (10 points) Prove that every simple graph on at least two vertices has at least two vertices of the same degree.
If G has n vertices and G is simple, then the set of possible values for $d(v)$ is $\{0,1, \ldots, n-1\}$. But we see that the values $n-1$ and 0 cannot be used in the same graph G. Thus, there are at most $n-1$ available values for $d(v)$. Since G has n vertices, at least one value must be repeated.

- 7. (16 points) For $K_{m, n}$ and P_{n}, find (a) the radius of the graph.

$$
\operatorname{rad}\left(K_{m, n}\right)=2
$$

(If $m=1$ or $n=1$, then

$$
\left.\operatorname{rad}\left(k_{m, n}\right)=1\right)
$$

(b) the diameter of the graph

$$
\operatorname{diam}\left(K_{m, n}\right)=2
$$

$$
\operatorname{diam}\left(P_{n}\right)=n-1
$$

(unless $m=n=1$, in which

$$
\text { case diam }\left(k_{1,}\right)=1 \text {.) }
$$

(c) the center of the graph
center of $K_{m, n}$ is $K_{m, n}$ (If $m=1$ or $n=1$, then the center of $k_{m, n}$ is one vertex.)
center of P_{n} is k_{1} if n odd K_{2} if n even
(d) the number of edges in a maximum matching.

$$
\begin{aligned}
& \alpha^{\prime}\left(K_{m, n}\right)=\min \{m, n\} \\
& \alpha^{\prime}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

8. (12 points) Assign integer weights to the edges of K_{n}. Prove that the total weight on every cycle is even if and only if the total weight on every triangle is even. (Note: Make the logical structure of your argument clear.)
\Rightarrow : If the weight of every cycle is even, then +4 the weight of every 3 -cycle iseven.
\rightleftharpoons : Assume the weight of every 3-cycle is even. Proceed by induction on the number of vertices in the cycle. That is, assume all cycles on fewer +8 than k vertices have even weight. Let C_{k} be a cycle with vertex set: $V_{1} v_{2} v_{3} \ldots V_{k} V_{1}$. (See picture below.) Since $k>3, V_{k-1} \leftrightarrow \rightarrow v_{1}$ in C_{k}.
 Consider $C_{k}+v_{1} V_{k-1}$. By the inductive hypothe sis, the cycles $C_{3}=V_{1} v_{k-1} v_{k}$ and $C_{k-1}=v_{1} v_{2} v_{3} \ldots v_{k-1} v_{k}$ both must have even weight.

Thus,

$$
w\left(C_{k}\right)=w\left(C_{3}\right)+w\left(c_{k-1}\right)-2 w(e)
$$

is even because the three numbers in the right-hand sum are even.
$\alpha(G)$ is the maximum cardinality of a set of independent vertices of G.
(b) (2 points) Explain what the symbol $\Delta(G)$ means.
ΔG denotes the maximin degree of G.
(c) (8 points) Prove that for every graph $G, \alpha(G) \geq \frac{n(G)}{\Delta(G)+1}$

We will construct an independent set of vertices of cardinality $\frac{n}{\Delta+1}$ which will suffice to prove the statement. Pick an arbitrary vertex $v \in G$. Add v to S and delete v and $N(v)$ from G. Note, at most $\Delta+1$ vertices were deleted. Repeat on $G-v-N(v)$. We know S is independent since the neighbors of V were excluded from when v is added. This algorithm must run at least $\frac{n}{\Delta+1}$ times Thus $|S| \geqslant n / \Delta+1$.

