Topics by Section

3.2 Stable matchings, Gale-Shapley Proposal Algorithm
4.1 separating set/vertex cut, connectivity, $\kappa(G), k$-connectivity, disconnecting set of edges, k-edge-connectivity, edge-connectivity, $\kappa^{\prime}(G)$, edge cut

Whitney's Theorem (4.1.9) If G is a simple graph, $\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)$.
Them 4.1.11 If G is 3-regular, then $\kappa(G)=\kappa^{\prime}(G)$.
4.2 internally disjoint $u v$-paths, $x y$-cut

Whitney's Theorem (4.2.2) A graph G with at least 3 vertices is 2-connected if and only if for each pair $u, v \in V(G)$ there exist internally disjoint $u v$-paths.

Theorem 4.2.4 (a list of 4 statements equivalent to being 2-connected)
Menger's Theorem: If x, y are nonadjacent vertices of the graph G, then the minimum number of edges in an $x y$-cut is equal to the maximum number of pairwise internally disjoint $x y$-paths.

