NAME:

This quiz contains 3 problems worth 30 points. You may not use books, notes, or a calculator. You have 30 minutes to take the quiz.

- 1. (12 points) Let $X = \{1, 2, 3, 4, 5\}$ and let R be a relation on X defined by the rule $(x, y) \in R$ if $x + y \le 6$.
 - (a) List the elements of R.
 - (b) Is R reflexive? Explain.
 - (c) Is R symmetric? Explain.
 - (d) Is R antisymmetric? Explain.
 - (e) Is R transitive? Explain.
 - (f) Is R a partial order? Explain.
 - (g) Is $R = R^{-1}$? Explain.

Math 307	Quiz #6	
DISCRETE MATH	§3.3-3.5	Spring 2016

- 2. (10 points) Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and let R be a relation on $X \times X$ by (a, b)R(c, d) if a + d = b + c. Note that R is an equivalence relation on $X \times X$.
 - (a) Give an example of two elements from $X \times X$ that relate to (3, 2).
 - (b) Give an example of two elements for $X \times X$ that do **not** relate to (3, 2).
 - (c) Show that R is symmetric.
 - (d) List all members of the equivalence class [(8, 1)].
- 3. (8 points)
 - (a) Write the matrix A_1 of the relation $R_1 = \{(1, a), (2, a), (2, b), (3, c)\}$ with orderings: 1,2,3; a,b,c.
 - (b) Write the matrix A_2 of the relation $R_2 = \{(a, y), (b, y), (b, z), (c, z)\}$ with orderings: a,b,c;x,y,z.
 - (c) List the ordered pairs in the relation $R_2 \circ R_1$.
 - (d) (2pts Extra Credit) Find the matrix product A_1A_2 and explain what its entries tell you about the relation $R_2 \circ R_1$.