Spring	2016
--------	------

Math 307	Quiz $\#7$	
DISCRETE MATH	§4.3	Spring 2016

NAME:

This quiz contains 4 problems worth 30 points. You may not use books, notes, or a calculator. You have 30 minutes to take the quiz.

Theta Form	Name	Theta Form	Name	
$\theta(1)$	Constant	$\theta(n^2)$	Quadratic	
$\theta(lg(lg(n)))$	Log log	$\theta(n^3)$	Cubic	Fact from Calc 2:
$\theta(lg(n))$	Log	$\theta(n^k), k \ge 1$	Polynomial	$1 + a + a^2 + \dots + a^k = \frac{a^{k+1} - 1}{a - 1}$
$\theta(n)$	Linear	$\theta(c^n), c > 1$	Exponential	
$\theta(n \ lg(n))$	$n \log n$	$\theta(n!)$	Factorial	

1. (3 points) Fill in the blank below in the definition:

For f(n) and g(n) be functions with domain $\{1, 2, 3, \dots\}$, we write f(n) = O(g(n))

if _____ for all but finitely many $n \in \mathbb{Z}^+$.

2. (12 points) Select a theta notation from the table for each expression and justify your answer.

(a) $5 \lg n + 3n^2 + 2n \lg n$

(b) $3 + 6 + 9 + 12 + \dots + (3n)$

(c) $1+2+4+8+\cdots+2^n$

3. (8 points) Answer the questions using the algorithm below:

i = nwhile (i > 1){
for j = 1 to i x = x + 1 $i = \lfloor i/2 \rfloor$ }

- (a) Give an expression (in terms of n) for the exact number of time the statement x = x + 1 is evaluated.
- (b) Select a theta notation from those in the table for the number of times the statement x = x + 1 is evaluated and justify your answer.

4. (7 points) Show that if f(n) = O(g(n)), then $g(n) = \Omega(f(n))$.