NAME:

\qquad
This quiz contains 4 problems worth 30 points. You may not use books, notes, or a calculator. You have 30 minutes to take the quiz.

Theta Form	Name	Theta Form	Name
$\theta(1)$	Constant	$\theta\left(n^{2}\right)$	Quadratic
$\theta(\lg (\lg (n)))$	Log log	$\theta\left(n^{3}\right)$	Cubic
$\theta(\lg (n))$	Log	$\theta\left(n^{k}\right), k \geq 1$	Polynomial
$\theta(n)$	Linear	$\theta\left(c^{n}\right), c>1$	Exponential
$\theta(n \lg (n))$	$n \log n$	$\theta(n!)$	Factorial

Fact from Calc 2:
$1+a+a^{2}+\cdots a^{k}=\frac{a^{k+1}-1}{a-1}$

1. (3 points) Fill in the blank below in the definition:

For $f(n)$ and $g(n)$ be functions with domain $\{1,2,3, \cdots\}$, we write $f(n)=O(g(n))$
if \qquad for all but finitely many $n \in \mathbb{Z}^{+}$.
2. (12 points) Select a theta notation from the table for each expression and justify your answer.
(a) $5 \lg n+3 n^{2}+2 n \lg n$
(b) $3+6+9+12+\cdots+(3 n)$
(c) $1+2+4+8+\cdots+2^{n}$
3. (8 points) Answer the questions using the algorithm below:
$i=n$
while $(i>1)\{$
for $j=1$ to i
$x=x+1$
$i=\lfloor i / 2\rfloor$
\}
(a) Give an expression (in terms of n) for the exact number of time the statement $x=x+1$ is evaluated.
(b) Select a theta notation from those in the table for the number of times the statement $x=x+1$ is evaluated and justify your answer.
4. (7 points) Show that if $f(n)=O(g(n)$, then $g(n)=\Omega(f(n))$.

