NAME: Solutions

This quiz contains 7 problems worth 30 points. You may not use books, notes, or a calculator. You do not have to simplify your answers. You have 30 minutes to take the quiz.

- 1. (3 points each)
 - (a) Determine the number of strings that can be formed by ordering the letters in the word ENGINEER.

8 letters 3 Ets 2 N/s 3!2!

(b) Determine the number of strings that can be formed by ordering the letters in the word ENGINEER if no two E's are allowed to be consecutive.

Strategy: Arrange NGINR, then place the three E's. between the NGINR.

(5!) · C (6,3)

2. (4 points) Find the number of integer solutions to $x_1 + x_2 + x_3 + x_4 = 30$ subject to the conditions $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 1$ and $x_4 \ge 2$.

Since we are forced to distribute 3 of the 30, there remain 27 to place in 4 bins.

all are correct $\rightarrow C(27+4-1,27)=C(30,27)=C(30,3)$

3. (2 points each) For each 5-combination of $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, give the 4-combination that is next lexicographically:

(a) 34678 34679

(b) 24789 max

25678

Inchease

4. (2 points) Explain why the algorithm we described in class (i.e. Algorithm 6.4.9 in your book) that generates all r-combinations of a given n-set would never produce the following output: 4286.

Combinations are written in increasing order.

So the combination 4286 would have appeared as: 2468

- 5. (2 points) For each permutation of $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, give the permutation that is next lexicographically:
 - (a) 873261945, 87326954
 - (b) 9573<u>28641</u> 957341268
- 6. (2 points each) Find the coefficient of the term when the expression is expanded:

(a)
$$x^5y^2z^3$$
; $(x+y+z)^{10}$
 $C(10,5) \cdot C(5,2)$

(b)
$$x^2y^3$$
; $(5x-y)^5$
25 · $(5,2)(-1)^3$

- 7# (3 points each)
 - (a) Fill in the box below in the statement of the Binomial Theorem:

If a and b are real numbers and n is a positive integer, then $(a+b) = \sum_{k=0}^{n} C(n,k) a^{n-k} b^{k}$

(b) Use the Binomial Theorem to prove that $2^n = C(n,0) + C(n,1) + C(n,2) + \cdots + C(n,n)$.

Choose
$$a=b=1$$
.
So $2^n = (1+1)^n = \sum_{k=0}^n C(n,k) \cdot 1^{n-k} \cdot 1^k$ (plug $a=b=1$ into Binom)

=
$$C(n, 0) + C(n, i) + ... + C(n, n)$$