Your Name (print clearly)

Monday 28 March 2016

Page	Total Points	Score
1	19	
2	29	
3	19	
4	23	
5	10	
extra credit	5	
Total	100	

Instructions and information:

- Please turn off cell phones or any other thing that will go BEEP.
- Scientific calculators are allowed on this test. You may not use a cell phone or a laptop.
- Read the directions for each problem. You must always show your work to receive partial credit.
- Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- If you need more room, use the backs of the pages and indicate to the grader where to look.
- Raise your hand (or come up to the front) if you have a question.
- Formulas from Calculus:
 - 1. $1 + a + a^2 + \dots + a^k = \frac{a^{k+1} 1}{a 1}$
 - 2. $\log_a n = \log_b n / \log_b a$
 - 3. $1+2+3+\cdots+n = \frac{n(n+1)}{2}$

1.	(a) (4 points) Fill in the blanks below:	
	i. A function f from X to Y is one-to-one if	
		<u> </u> ·
	ii. A function f from X to Y is onto if	
		·

(b) (4 points) Assume that the domain and the codomain of the function $f(n) = \lfloor n/4 \rfloor$ is the set of all integers. Determine if f(n) is one-to-one, onto, or both.

(c) (3 points) Given an example of a function g(x) from \mathbb{R} to \mathbb{R} that is one-to-one but not onto and show that your example is not onto. (You do not need to justify the one-to-one property.)

- 2. (8 points) Let a be a sequence defined by $a_n = 3n + 1$, for $n = 1, 2, 3, \cdots$.
 - (a) Find a_6 .
 - (b) Find $\sum_{i=1}^{3} a_i$
 - (c) Find a formula for the subsequence of a obtained by selecting every other term of a starting with the first.

- 3. (14 points) Let R be a relation on the set of positive integers defined by $(x, y) \in R$ if 2 divides x + y.
 - (a) Find an example of an ordered pair in R.
 - (b) Find an example of an ordered pair not in R.
 - (c) Is R reflexive?
 - (d) Is R antisymmetric?
 - (e) Is R transitive?
- 4. (15 points) Let S be the set of all strings on the set $\{0, 1, 2\}$ of length 3 or less. Let R be the equivalence relation on S defined by s_1Rs_2 if the strings s_1 and s_2 have the same number of zeros.
 - (a) Explain why the string 12 is related to the string 211.
 - (b) Explain why the string 120 is not related to the string 001.
 - (c) Find all elements in [001], the equivalence class containing the string 001.
 - (d) How many equivalence classes does R have?
 - (e) List one member of each equivalence class.

5. (a) (7 points) Fill in the blank below in the definition:
For f(n) and g(n) be functions with domain {1, 2, 3, ···}, we write f(n) = O(g(n))
if ______ for all but finitely many n ∈ Z⁺.

(b) Use the definition above to show $1 + 2^k + 3^k + \dots + n^k$ is $O(n^{k+1})$.

6. (12 points) For each expression below, select a θ notation from the table and justify your answer.

Theta Form	Name	Theta Form	Name
$\theta(1)$	Constant	$\theta(n^2)$	Quadratic
$\theta(lg(lg(n)))$	Log log	$ heta(n^3)$	Cubic
$\theta(lg(n))$	Log	$\theta(n^k), k \ge 1$	Polynomial
$\theta(n)$	Linear	$\theta(c^n), c > 1$	Exponential
$\theta(n \ lg(n))$	$n \log n$	$\theta(n!)$	Factorial

(a) $\frac{n^3 + 5n \lg n}{4n + 8}$

(b)
$$3+9+27+\cdots+3^n$$
.

- 7. (8 points) Let $m = 2^3 \cdot 5 \cdot 11^2 \cdot 17^3$ and $n = 2^2 \cdot 7 \cdot 11^5$.
 - (a) Find the greatest common divisor of m and n.
 - (b) Find the least common multiple of m and n.
- 8. (15 points) Let m = 159 and n = 509.
 - (a) Trace the Euclidean Algorithm for inputs m and n above. (You need to show your steps, at least in abbreviated form and state the output explicitly.)

- (b) What is the significance of the number returned by the Euclidean Algorithm?
- (c) Write the greatest common divisor of m and n as a linear combination of m and n.

- 9. (10 points)
 - (a) Write the decimal number 900 in binary.

(b) Write the decimal number 900 in hexadecimal.

Extra Credit (5 points): Prove that $\lg(n!) = \theta(n \lg n)$.