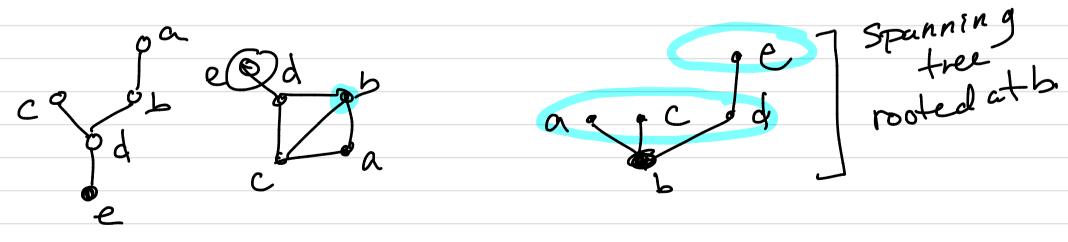
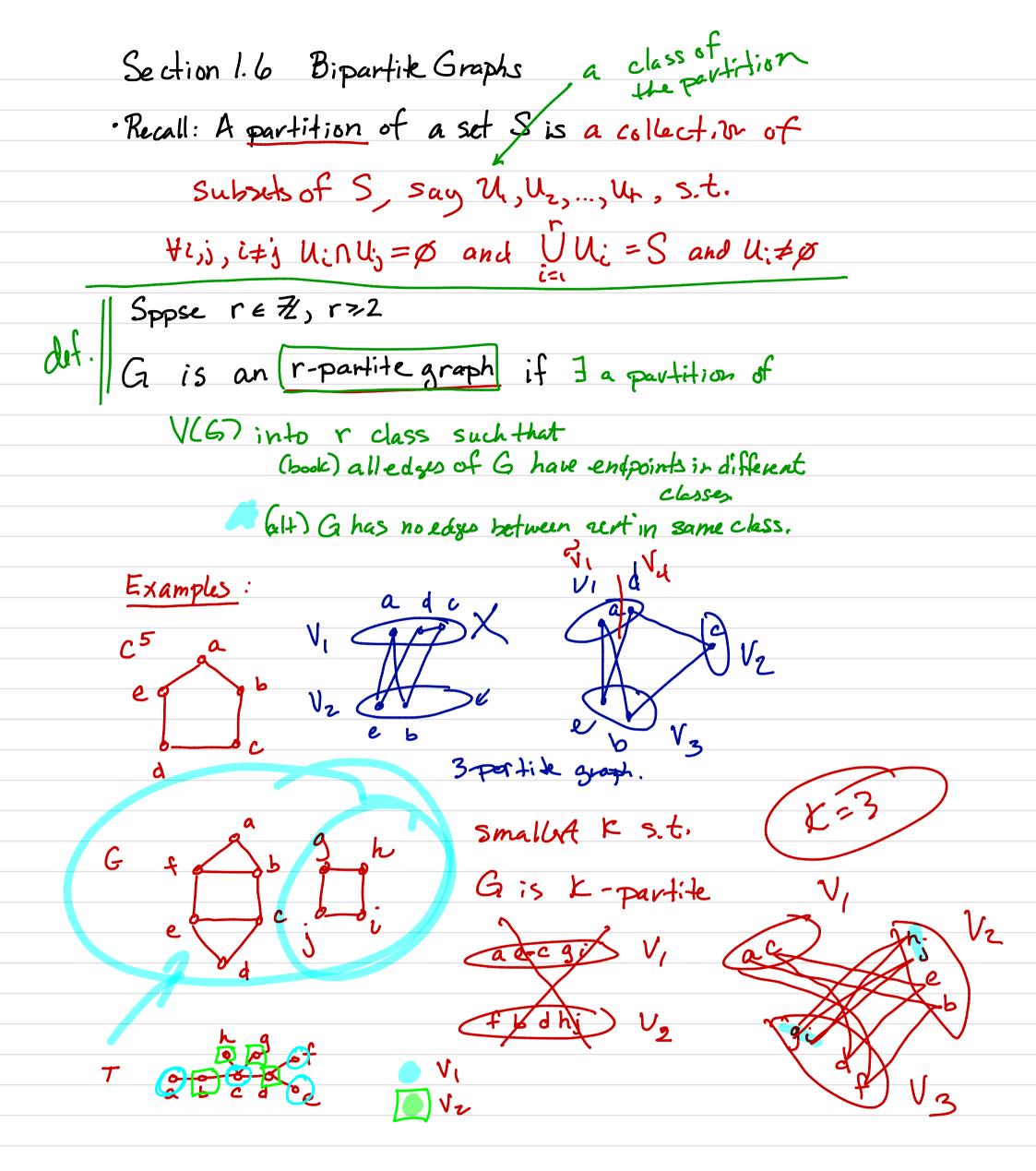
Wed 13 Sept

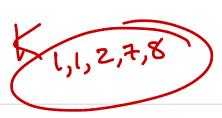
- · hwk due Fri
- · problem session tomorrow

\$1.5 Trees + Forests


Recall *A forcet is an acyclic graph.

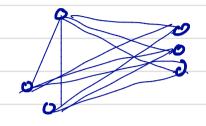

- · A tree is a connectal fonot.
- The subgraph T of G is called a spanning tree if V(T)=V(G) and T tree.
- · Fact: Every connected graph G contains
 a spanning tree.

POF: Add edges iteratively avoid producing a cycle. This must end in a spanning tree.


V(G)-V(7)

· How canthis be useful?

A bipartite graph is a 2-partite graph.


K2,418,1

The complete r-partite graph on n vertices

1,+12+ ... +hr = h

where classes have cardinality ning, ..., nr

 $K_{n_1,n_2,...,n_r}$

• If G is complete r-partite s.t. every class has cardinalitys, Kr

Thm: G is bipartite iff G contains no odd cycle

Pf: =>: Spp G bipartite. => mu au Vi fair contoon

So I a partition of V into two sik Vy and Vz.

Nt.S if I cycle C, C cannot have odd length.

Given C= v, vz...vx. Since Cis bipatite wolg

Vi isin Vy st. is, have same parity. So Vk and VI

have different parity. So Kis even.

Pf =:
Spose Ghas no odd cycles
It is sufficient to show that an arbitrary component of G is bipartite.
Spps His a compof G. V2
Strategy: Construct partition of VCH) unto V1, V2 st. all edges 90
Pide between classes. Tallvert.
· arbitrary redix, say $v \in V(H)$. Probables
· Define Vi and Vz as
$V_i = \frac{2}{3} \times \frac{4}{7} (\times, v) \leq odd \leq \frac{v}{i} \text{ classes}$
· Arbitrary reax, say $v \in V(H)$. · Find a spanning theorin H rooted at v . · Define V_1 and V_2 as $V_1 = \{x : d_7(x,v) \text{ is odd}\}$ $v : d_7(x,v)$ is even
of lete(T), then e is between v. in C offerend classes. If e # E(T), then, in T+e has a cycle
offerenclassos. If extern, then, in T+e has a cycle
e 6 G and
By assumption Ciseven. So it contains a
These alt. between classes. So endpoints of path art forced to be in different classes.
arl forced to be in different classes.
$K_{m,n}$ $K(K_{m,n})$
$m_1 m_2 m_1 m_2 m_1 m_2 m_1 m_2 m_1 m_2 m_1 m_2 m_2 m_2 m_2 m_2 m_2 m_2 m_2 m_2 m_2$
$m \leq n$
(')

M = n