MATH 663

Disclaimers: If a definition, term, or notation was discussed in class and/or appeared on the homework, you are expected to know it. There is no claim that this review is perfect.

Chapter 4: Planar Graphs

- terms: plane graph, face, outer face, outer planar, maximally planar, plane triangulation, maximal plane graph.
- theorems to remember:
 - Thm 4.4.1 Jordan Curve theorem
 - Prop 4.2.4: A plane forest has exactly one face.
 - Prop 4.2.6: In a 2-connected plane graph, every face is bounded by a cycle.
 - Prop 4.2.8 A plane graph on at least three vertices is maximally plane if and only if it is a plane triangulation.
 - Cor 4.2.10 A plane graph has at most 3n 6 edges (provided $n \ge 3$). Every plane triangulation with *n* vertices has exactly 3n 6 edges.
 - Cor 4.2.11 A plane graph contains neither a K^5 nor a $K_{3,3}$ as a subgraph.
 - Prop 4.4.1 Every maximal plane graph is maximally planar. For a planar graph, maximally planar is equivalent to having 3n 6 edges (provided $n \ge 2$).
- theorems to know by name: Thm 4.2.9 Euler's Formula, Thm 4.4.6 Kuratowski's Theorem A graph is planar if and only if it has no K^5 or $K_{3,3}$ minor.

Chapter 5: Coloring

- terms: coloring, vertex coloring, edge coloring, k-coloring, k-edge-coloring, k colorable, k-edge colorable, k-chromatic, k-edge-chromatic, chromatic number, edge chromatic number, $\chi(G)$, $\chi'(g)$, greedy coloring, Mycielski's construction, color class
- theorems to remember:
 - Lemma 5.2.3 Every k-chromatic graph contains a subgraph of minimum degree at least k-1.
 - Prop 5.3.1 If G is bipartite, then $\chi'(G) = \Delta(G)$.
- theorems to know by name:
 - Them 5.2.4 Brook's Theorem Let G be a connected graph. Then $\chi(G) \leq \Delta(G)$ or G is a complete graph or G is an odd cycle.
 - Thm 5.3.2 Vizing's Theorem For every (simple) graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Chapter 6: Flows

- terms: network, capacity, flow, integral flow $\overrightarrow{E}(G)$, cut, $\overrightarrow{E}(X,Y) \overrightarrow{e}$, \overleftarrow{e} , c(X,Y), f(X,Y), value of a flow, |f|, capacity of a cut.
- theorems to remember:

- Prop 6.2.1: In a network N with cut S, $f(S,\overline{S}) = f(s,V)$.
- theorems to know by name: Thm 6.2.2 Ford Fulkerson In every network, the maximum value of a flow is equal to the minimum capacity of a cut.

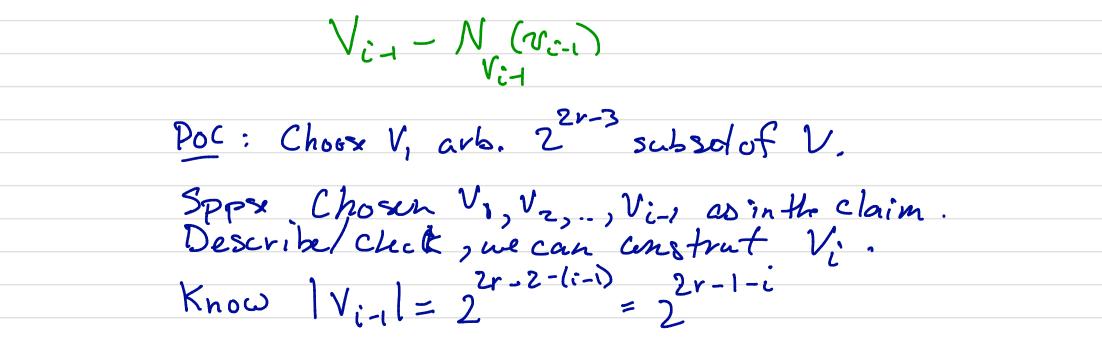
Chapter 7: Extremal Graph Theory

- terms: Turán graph, extremal graph, extremal number, ex(n,H)
- theorems to know by name: Thm 7.1.1 Turán For all integers *r* and *n* with r > 1, if *G* is K^r -free and $|E(G)| = ex(n, K^r)$, then $G \cong T^{r-1}(n)$.

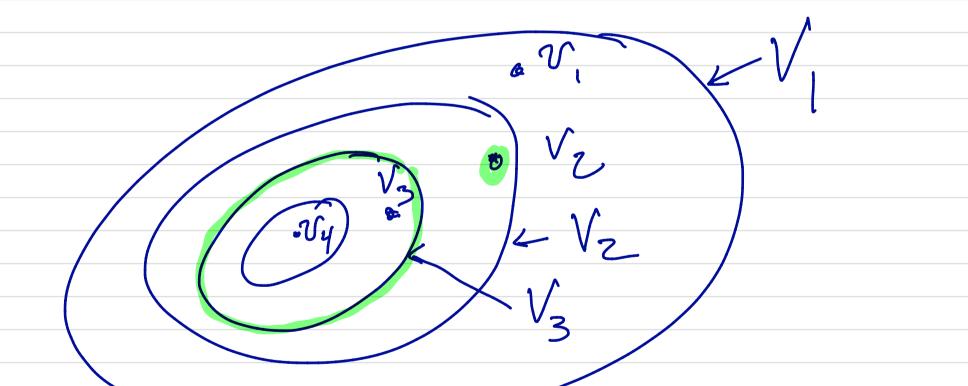
Fri 10 Nov Hwk 9 due today
 FBKS
 Mid 2 next Fri 4pm-6pm · Adjusted end of semester schedule. · Agenda · Prove Ramsey's Thm formally · Review · Other ?

Thm 9.1.1

YreiN, InEN s.t. every graph on at least nucrtices contains Kror Kr as an induced subgraph. Pf: Or=1 / k'. (2) r7,2 n = 2, G graph what least n'vertices Claim We can construct the following nested subsets V, Vz,..., Vzr-2 EV and find vi, vz, ..., vzr-z, vie Vi Satisfying 2r-2-i $V_i| = 2$ for $i \in \{1, 2, ..., 2r-2\}$ (2) $V_i \subseteq V_{i-1} - \{v_{i-1}\} \in \{2, ..., 2v-2\}$ 3 vi-, is either adj to all vert. in Vi on 13 nonadj tuall vert in Vi. ie ? B, Er-23 picious the larger of N(Vin) ON



Know $|V_{i-1}| = 2$ = 2 = 2So Vi-1-Evi-13 = 2 -1 6000 $S_{0} |V_{i}| \ge \frac{1}{2} |V_{i-1} - \frac{1}{2} |V_{i-1} - \frac{1}{2} |\frac{2r-1-i}{2} |$ $1 |V_{i}| = 2^{2r-1-i-1} |V_{i}| = 8$ We are cheosing Vi s.t. the vertex VC-1 is either adj toall or nonady toall vertin Vi. X



Consider the view of
$$v_1, v_2, \dots, v_{2r-3}$$
 from
 v_{2r-2} , It has the same view (adj/nonadj) to
at least half of $V_1, V_2, \dots, V_{2r-3}$. So at least
 $\frac{2r-3}{2} = r - \frac{3}{2} = \frac{r-1}{r-1}$ have same view.
 $2r-3 = 17 - \frac{17}{2} = 8.5$

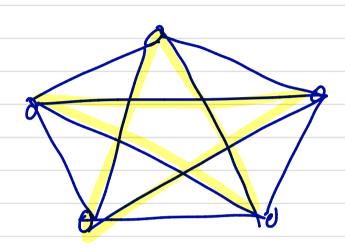
Vi $V_{i,+1}$ Viz Nir-1 V2r-2 adi, nonati $\mathcal{V}_{i} \in V_{k+1}$ for k < j $\mathcal{N}_1, \mathcal{N}_2, \mathcal{N}_3 \dots \mathcal{N}_{2r-3}, \mathcal{N}_{2r-2}$ have r-1 vertions So the rel. be Vi, Vi, .. Viral Vix and Vi and V ix and Vi and V i, E {1,2,.., 2x-3 must be the same $i_1 < i_2$

Ramsey Theory Notation

R(r) = min ZnEN: even n-vertex graph contains kor kr as a Subgraph { Ranging's Then R(r) finite Proof of R's Then: $R(r) \leq 2^{2r-3}$ R(r) = R(k', k') = R(k', k'; z) $R(r) = R(k^{r}, k^{r})$ = min In en : every 2-coloring of the edges of a kn has lither a red k or a blue k S

 $R(k^{3},k^{3}) \leq 2 = 2 = 2$ = 8

 $CR(k^{3}, k^{3}) = 6$



1/2

2

