MATH 663 Midterm 2 - Review Fall 2023

Disclaimers: If a definition, term, or notation was discussed in class and/or appeared on the homework,
you are expected to know it. There is no claim that this review is perfect.

Chapter 4: Planar Graphs

e terms: plane graph, face, outer face, outer planar, maximally planar, plane triangulation, maximal
plane graph. P lanay DWJPH A——— ———

e theorems to remember:

Thm 4.4.1 Jordan Curve theorem

Prop 4.2.4: A plane forest has exactly one face.

Prop 4.2.6: In a 2-connected plane graph, every face is bounded by a cycle.

Prop 4.2.8 A plane graph on at least three vertices is maximally plane if and only if it is a plane
triangulation.

— Cor 4.2.10 A plane graph has at most 3n — 6 edges (provided n > 3). Every plane triangulation
with n vertices has exactly 3n — 6 edges.

— Cor 4.2.11 A plane graph contains neither a K> nor a K3 3 as a subgraph.

— Prop 4.4.1 Every maximal plane graph is maximally planar. For a planar graph, maximally
planar is equivalent to having 3n — 6 edges (provided n > 2).

e theorems to know by name: Thm 4.2.9 Euler’s Formula, Thm 4.4.6 Kuratowski’s Theorem A graph
is planar if and only if it has no K> or K3 3 minor.

Chapter 5: Coloring

e terms: coloring, vertex coloring, edge coloring, k-coloring, k-edge-coloring, k colorable, k-edge
colorable, k-chromatic, k-edge-chromatic, chromatic number, edge chromatic number, x(G), x'(g),

greedy coloring, Mycielski’s construction s C6 lor ¢ l&.ﬁé

e theorems to remember:

— Lemma 5.2.3 Every k-chromatic graph contains a subgraph of minimum degree at least k — 1.
— Prop 5.3.1 If G is bipartite, then }'(G) = A(G).

e theorems to know by name:

— Them 5.2.4 Brook’s Theorem Let G be a connected graph. Then x(G) < A(G) or G is a
complete graph or G is an odd cycle.

— Thm 5.3.2 Vizing’s Theorem For every (simple) graph G, A(G) < x'(G) < A(G) + 1.
Chapter 6: Flows

e terms: network, capacity, flow, integral flow E(G) cut, E(X Y) 7, %, c(X,Y), f(X,Y), value of
a flow, | f|, capacity of a cut.

e theorems to remember:
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— Prop 6.2.1: In a network N with cut S, £(S,S) = f(s,V).

e theorems to know by name: Thm 6.2.2 Ford Fulkerson In every network, the maximum value of a
flow is equal to the minimum capacity of a cut.

Chapter 7: Extremal Graph Theory

e terms: Turdn graph, extremal graph, extremal number, ex(n,H)

e theorems to know by name: Thm 7.1.1 Turdn For all integers r and n with r > 1, if G is K" -free and
|E(G)| = ex(n,K"), then G= T !(n).
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