
MATH 663 Midterm 2 - Review Fall 2023

Disclaimers: If a definition, term, or notation was discussed in class and/or appeared on the homework,
you are expected to know it. There is no claim that this review is perfect.

Chapter 4: Planar Graphs

• terms: plane graph, face, outer face, outer planar, maximally planar, plane triangulation, maximal
plane graph.

• theorems to remember:

– Thm 4.4.1 Jordan Curve theorem

– Prop 4.2.4: A plane forest has exactly one face.

– Prop 4.2.6: In a 2-connected plane graph, every face is bounded by a cycle.

– Prop 4.2.8 A plane graph on at least three vertices is maximally plane if and only if it is a plane
triangulation.

– Cor 4.2.10 A plane graph has at most 3n�6 edges (provided n� 3). Every plane triangulation
with n vertices has exactly 3n�6 edges.

– Cor 4.2.11 A plane graph contains neither a K
5 nor a K3,3 as a subgraph.

– Prop 4.4.1 Every maximal plane graph is maximally planar. For a planar graph, maximally
planar is equivalent to having 3n�6 edges (provided n� 2).

• theorems to know by name: Thm 4.2.9 Euler’s Formula, Thm 4.4.6 Kuratowski’s Theorem A graph
is planar if and only if it has no K

5 or K3,3 minor.

Chapter 5: Coloring

• terms: coloring, vertex coloring, edge coloring, k-coloring, k-edge-coloring, k colorable, k-edge
colorable, k-chromatic, k-edge-chromatic, chromatic number, edge chromatic number, c(G), c 0(g),
greedy coloring, Mycielski’s construction

• theorems to remember:

– Lemma 5.2.3 Every k-chromatic graph contains a subgraph of minimum degree at least k�1.

– Prop 5.3.1 If G is bipartite, then c 0(G) = D(G).

• theorems to know by name:

– Them 5.2.4 Brook’s Theorem Let G be a connected graph. Then c(G)  D(G) or G is a
complete graph or G is an odd cycle.

– Thm 5.3.2 Vizing’s Theorem For every (simple) graph G, D(G) c 0(G) D(G)+1.

Chapter 6: Flows

• terms: network, capacity, flow, integral flow
�!
E (G), cut,

�!
E (X ,Y ) �!e , �e , c(X ,Y ), f (X ,Y ), value of

a flow, | f |, capacity of a cut.

• theorems to remember:
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– Prop 6.2.1: In a network N with cut S, f (S,S) = f (s,V ).

• theorems to know by name: Thm 6.2.2 Ford Fulkerson In every network, the maximum value of a
flow is equal to the minimum capacity of a cut.

Chapter 7: Extremal Graph Theory

• terms: Turán graph, extremal graph, extremal number, ex(n,H)

• theorems to know by name: Thm 7.1.1 Turán For all integers r and n with r > 1, if G is K
r-free and

|E(G)|= ex(n,Kr), then G⇠= T
r�1(n).
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