

Gis 2-conn. YVEV JWEN(V) S.E Fri 13 Oct G-v-w stillcome · Hmwk #6 due Fri ZVS. (. FWENCY) · Midterms returned by Mon (?) · G-V-w d.scm · Mon notes trides posted. · W is a aturty in G-V Agenda for today
recall planar stuff
Euler's Formula 25 · soften up Kuratowki From Monday • G = (V, E) is a plane graph means $V_{1} E \subseteq \mathbb{R}^{2}$ s.t. V-points in R² E-E - arcs in IR2 made of finite # of Straight line segments and different edges have nonintersecting arcs. R/ faces of plane graph G are the (open)sets in R²-G with boundary G.

def: · plane graph G = (V, E) is called maximally plane (or maximal) if VeeG, it is not possible to add e to G and the KSult still be plake. $\left[\begin{array}{c} x \\ \vdots \\ \vdots \\ \vdots \\ y \end{array}\right] R^2$ · G is a plane triangulation if every face of G is bounded by K³. Prop 4.2.8 G is a plane graph on at least 3 Vertices Gismaximal <=> Gisaplanetriangulation. Pf: E: Spps Gis a triangulation. NHS no added edge is possible. Any added edge is an arc w/i 1 face Since each form is k³, no edge to add.

Euler's Formula
$$(7hm 42.9)$$

G connected plane graph s.t. $n = \#$ perfices
 $m = \#$ adges
 $f = \#$ faces.
then $n - m + f = 2$
 $p = 2$
 $p = 1$
 $p = 1$

Cor 4.2.1D: · G plane graph on n vertices, N7.3 then $||G|| \leq 3n-6$. Every plane triangulation has exactly 3n-6 edge. maximally plane graph Pf: Suff to show Dulator has 3n-leedges. G is plane triangulation => Ifface, boundary S K³. If f= # faces, then count edges by 3. f. But this double counts all edges. So $3 \cdot f = 2 \cdot m$ or $f = \frac{2}{3}m$ $2 = n - m + f = n - m + \frac{2}{3}m$ 6 = 3n - 3m + 2m = 3n - mm = 3n - 6Obs: K⁵ and K3,3 cannot have plane representations

G planar? G hos a plue embedding the IF It has a pum embedding We would get an embedding of KS by replacing paths in H by arcs.

Cor 4.2.11 No plane graph can contain a topological minor of K⁵ or K3,3. OR If G contains K⁵ or K3,3 as a topologial minor, then Gis nonplanar. Thm (4.4.6) Kuratowski's Thm G is planar (=>> G does not contain K or K3,3 as a minor Logical Structure • Ghasno K3,3 or K⁵ (=> Ghasno K3,3 or K⁵ as a as a topological minor minor

Lemma 4.4.2 G contains K⁵or K_{3,3} as a \iff G contains K⁵or K_{3,3} minor as a topological minor Pf = done → :