Theorem (Brooks, 1941) Let *G* be a connected graph that is not complete and is not an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof: The only connected graphs with $\Delta \in \{0,1\}$ are complete. Observe that if $\Delta 2$, then *G* is a path or a cycle. Since *G* is not an odd cycle, $\Delta \le 2$ implies *G* is bipartite and $\chi(G) \le 2 = \Delta(G)$. So, we suppose that $\Delta(G) = 3$.

Case 1: There exists a vertex $v \in V$ such that $d(v) \leq \Delta$.

Let *T* be a spanning tree of *G* constructed as a breadth first search starting with *v* as its root. Order the vertices of *G* in the reverse order in which they are added to the tree. So $v = v_n$ and N(v) will be $v_{n-1}, v_{n-2}, \dots, v_{n-k}$ where k = d(v). Apply a greedy coloring algorithm to the vertices in this order. Observe that for every $1 \le i \le n-1$, the vertex v_i is guaranteed to have a neighbor v_j such that j > i. So, at most $\Delta - 1$ neighbors of v_i have been assigned colors when v_i is reached by the coloring algorithm. Thus, a color from the set $\{1, 2, \dots, \Delta\}$ is available. Since $d(v_n) < \Delta$, there is always a color available for v_n .

Case 2: For every vertex $v \in V$, $d(v)\Delta$. (i.e. *G* is regular).

Subcase 2.1 $\kappa(G) = 1$

Let *v* be a cut-vertex of *G* and let *C* be a component of G - v. Let $H = G[C \cup \{v\}]$. Observe that $d_H(v) < \Delta$. Thus, using the technique from Case 1, we can color *H* with at most Δ colors and without loss of generality, we can assume *v* is colored with color Δ . Since *C* was chosen arbitrarily, we can color every component of G - v and *v* with Δ colors such that *v* is colored with color Δ . So the colorings of all of the components separately form a coloring of all of *G*.

Subcase 2.2 G is 2-connected.

Claim: There exist a triple of vertices x, y, z such that $x, z \in N(y)$ and $G - \{x, z\}$ is connected.

If the Claim is true, we can order the vertices by $v_1 = x, v_2 = z, v_n = y$ and the remaining vertices are ordered according to a spanning tree of $G - \{x, z\}$ constructed as a breadth first search form *y*. By forcing *x* and *y* to have the same color, we guarantee that when a greedy coloring algorithm reaches v_n on the the Δ colors will be available. All vertices v_i for $3 \le i \le n-1$ are guaranteed to have at least one neighbor, v_j , such that i < j, so these, too, can be assigned one of Δ colors.

Proof of Claim: If *G* contains a vertex *x* such that G - x is 2-connected, then any path *xyz* to a vertex $z \notin N(x)$ satisfies the claim. So we suppose that for every vertex *y*, G - y is 1-connected. Thus, G - y has a block and cut-vertex structure. Since *G* is 2-connected, *y* must be adjacent to a non-cut-vertex in every end-block in the block graph of G - y. Pick *x* and *z* to be neighbors of *y* in two different end-blocks that are not cut-vertices. Since *x* and *z* are not cut-vertices, $G - \{x, y, z\}$ is still connected. Since $\Delta \ge 3$, *y* must have at least one edge to $G - \{x, z\}$ and the claim follows.