MATH 663

- 1. Prove that for every graph G, there exists an order of the vertex set of G such that a greedy algorithm using this ordering will use $\chi(G)$ colors.
- 2. For every $n \ge 3$, construct a bipartite graph on 2n vertices and an ordering of the vertex set such that the greedy algorithm will use *n* colors (as opposed to the optimal 2 colors). Give a justification.
- 3. A *k*-chromatic graph *G* is called **critical** if $\chi(G v) < k$ for every vertex $v \in G$.
 - (a) Characterize critical 2-chromatic graphs.
 - (b) Find an example of a critical 3-chromatic graph.
 - (c) Prove that for $k \ge 3$ every critical *k*-chromatic graph is (k-1)-edge-connected.
 - (d) Characterize the set of critical 3-chromatic graphs.
- 4. The clique number of a graph, denoted by $\omega(G)$, is the largest *r* such that $K^r \subseteq G$. The independence number of a graph, denoted by $\alpha(G)$, is the largest *r* such that *G* contains an independent set of vertices of cardinality *r*.
 - (a) Determine $\omega(G)$ and $\alpha(G)$ for the graphs below. Answers are sufficient. No justification required.

i. P^m for $m \ge 1$ ii. C^k iii. $K_{m,n}$ where $m \le n$ iv. K^n

- (b) Prove that $\chi(G) \ge \max\{\omega(G), |G|/\alpha(G)\}.$
- 5. Prove or Disprove: Every *k*-chromatic graph *G* has a *k*-coloring in which some color class has at least $\alpha(G)$ vertices.
- 6. Assume that H is a k-chromatic triangle-free graph and the G is obtained from H by Mycielski's Construction.
 - (a) Prove that G is also triangle-free.
 - (b) Prove that G is (k+1)-colorable.
- 7. Describe the topic of your project and what source(s) you have found.