- 1. Give an example to show that if G is allowed to have multiple edges, then $\chi'(G)$ may exceed $\Delta(G) + 1$.
- 2. Without using Proposition 5.3.1, show that $\chi'(G) = k$ for every *k*-regular bipartite graph *G*.
- 3. Give an explicit edge-coloring to prove that the *n*-dimensional cube, Q^n , is Class 1.
- 4. Prove that if *G* is a regular graph with a cut vertex, then $\chi'(G) > \Delta(G)$.
- 5. The cartesian product of two graph *G* and *H*, denoted $G \Box H$, is the graph with vertex set $V(G \Box H) = V(G) \times V(H)$. A pair of vertices $(x_1, y_1), (x_2, y_2)$ are adjacent in $G \Box H$ if and only if $x_1 = x_2$ and $y_1y_2 \in E(H)$ or $x_1x_2 \in E(G)$ and $y_1 = y_2$.
 - (a) Draw $P_2 \square C^4$.
 - (b) Prove that $\Delta(G \Box H) = \Delta(G) + \Delta(H)$
 - (c) Prove that if $\chi'(H) = \Delta(H)$, then $\chi'(G \Box H) = \Delta(G \Box H)$.
- 6. (a) Let G_1 be a 5-cycle with one chord. Show that there exists a graph H such that $L(H) = G_1$.
 - (b) Prove that for the graph G_2 (drawn below) that there does not exist any graph H such that $L(H) = G_2$.

