
MATH 663

Fall 2017

Midterm

Books and notes are not allowed. There are 9 problems worth a total of 100 points. You have two

hours to complete the exam.

1. (10 points) Determine whether or not the sequence 5, 5, 4, 4, 3, 3, 2, 1, 1 is graphic. If the se-

quence is graphic, demonstrate a graph with this degree sequence. If the sequence is not

graphic, give a well-defended argument that it is not. Reference any theorems you are using.
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2. (10 points) In the matrix below, ai,j gives the weight of the edge between xi to yj for a complete

bipartite graph K5,5. Use the Hungarian Algorithm to find a maximum weight matching (or a

transversal of maximum sum) in this graph. Prove that your answer is correct by exhibiting

a solution to the dual problem.
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3. (a) (2 points) Define strong component in a digraph.

(b) (3 points) Give an example of a directed graph on 4 vertices with exactly 3 strong com-

ponents.

(c) (2 points) Define a tournament.

(d) (3 points) Explain why it is not possible to construct a tournament on 4 vertices with

exactly 3 strong components.

4. (10 points) Find a tree with Prüfer Code 2,6,1,9,4,4,9,2.
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5. (a) (2 points) State the definition of a tree.

(b) (4 points) Give an example of a tree T on 6 vertices and a set S ✓ V (T ), such that S is a

maximal independent set of vertices that is not a maximum independent set of vertices.

(c) (4 points) List all nonisomorphic trees on 6 vertices with maximum degree 3. Do not list

any isomorphism class more than once.

6. (10 points) Prove that every simple graph on at least two vertices has at least two vertices of

the same degree.
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If G has n vertices and G is simple ,
then

the set of possible values for dlv ) is { 0,1 , ...

,
n - B .

But we see that the Values n -1 and 0 cannot

be used in The same graph G
.

Thus
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7. (16 points) For Km,n and Pn, find

(a) the radius of the graph.

(b) the diameter of the graph

(c) the center of the graph

(d) the number of edges in a maximum matching.
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8. (12 points) Assign integer weights to the edges of Kn. Prove that the total weight on every

cycle is even if and only if the total weight on every triangle is even. (Note: Make the logical

structure of your argument clear.)
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⇒ : if the weight of every cycle is even
,

then

+ 4 the weight of every 3- cycle i seven
.

⇐ : Assume the weight of every 3- cycle is

even .
Proceed by induction on the number of

vertices in the cycle .
That is

,
assume all cycles on fewer

too than K vertices have even weight .
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.



9. (a) (2 points) Define ↵(G), the independence number of the graph G.

(b) (2 points) Explain what the symbol �(G) means.

(c) (8 points) Prove that for every graph G, ↵(G) � n(G)
�(G)+1 .
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a (G) Is the maximum cardinality
of a set of independent vertices of G

.

^

DG denotes the maximum degree of G .
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arbitrary
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.
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from S when v is added .
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