MATH 663 Sol uti ons

FaLL 2017
MIDTERM

Books and notes are not allowed. There are 9 problems worth a total of 100 points. You have two

hours to complete the exam.

1. (10 points) Determine whether or not the sequence 5,5,4,4,3,3,2 1,1 is graphic. If the se-
quence is graphic, demonstrate a graph with this degree sequence. If the sequence is not

graphic, give a well-defended argument that it is not. Reference any theorems you are using.
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2. (10 points) In the matrix below, a; ; gives the weight of the edge between z; to y; for a complete
bipartite graph K 5. Use the Hungarian Algorithm to find a maximum weight matching (or a
transversal of maximum sum) in this graph. Prove that your answer is correct by exhibiting

a solution to the dual problem.
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3. (a) (2 points) Define strong component in a digraph.
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(b) (3 points) Give an example of a directed graph on 4 vertices with exactly 3 strong com-

(o)
or
[

ponents.

(¢) (2 points) Define a tournament.

A buminest 1s an orientatin OFkn

(d) (3 points) Explain why it is not possible to construct a tournament on 4 vertices with

exactly 3 strong components. n Dh '\’V'\V '\u\
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4. (10 points) Find a tree with Priifer Code 2,6,1,9,4,4,9,2.
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5. (a) (2 points) State the definition of a tree.
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(b) (4 points) Give an example of a tree T" on 6 vertices and a set S C V(7T'), such that S is a

maximal independent set of vertices that is not a maximum independent set of vertices.
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(c) (4 points) List all nonisomorphic trees on 6 vertices with maximum degree 3. Do not list

any isomorphism class more than once.
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6. (10 points) Prove that every simple graph on at least two vertices has at least two vertices of

the same degree.
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@ 7. (16 points) For K,,, and P,, find

(a) the radius of the graph.
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(b) the diameter of the graph
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(c) the center of the graph
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(d) the number of edges in a maximum matching.
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8. (12 points) Assign-integer. weights.to-theredges'of K. Prove that the total weight on every
cycle is even if and only if the total weight on every triangle is even. (Note: Make the logical

structure of your argument clear.)
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9. (a) (2 points) Define a(G), the independence number of the graph G.
406D is Hu parimum cavelinalify
& o st of independuct verhias of G

(b) (2 points) Explain what the symbol A(G) means.
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(c) (8 points) Prove that for every graph G, a(G) > AT(Lg);)H- %
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