1. Let *G* be a simple graph such that $\chi(G) = k$. Let $c: V(G) \to [k]$ be a *k*-coloring of the vertex set of *G*. Prove that for every $i \in [k]$, there exists at least one vertex assigned color *i* that is adjacent to at least one vertex of each of the other $k - 1$ colors.

Proof: Let *G* be a simple graph with chromatic number *k* and *k*-coloring *c*. For every $i \in [k]$, let V_i be the vertices in color class *i*.

Observe that if $c(x) = i$ and x has no adjacencies in V_j , for $i \neq j$, then $V_j \cup x$ is an independent set and so *x* can be reassigned to color *j*.

If there exists a color class V_i such that for every $x \in V_i$ there exists a color $j \neq i$ such that *x* has no adjacencies in V_j , then every vertex in V_i can be assigned to some new color. This would imply that $\chi(G) < k$, a contradiction.

2. Prove that if *G* is *r*-regular and $\kappa(G) = 1$, then $\chi'(G) > r$. (Recall that $\kappa(G)$ is the connectivity of a graph.)

Proof: Suppose *G* is *r*-regular and $\kappa(G) = 1$. Since $\kappa(G) = 1$, it follows that $r \geq 2$.

Let *v* be a cut vertex of *G* with neighbors *x* and *y* in distinct components of *G*−*v*. Without loss of generality suppose that *vx* is assigned color 1and *vy* is assigned color 2.

If $\chi'(G) = r$, then the set of edges assigned colors 1 and 2 form a 2-regular graph. Thus, *v* lies on a cycle which contracts the fact that *v* is a cut vertex.

3. (a) Describe the graph, $T^r(n)$, the Turán graph, as described in our text.

It's a complete *r*-partite graph on *n* vertices such that the vertex classes are as even as possible.

(b) State Turán's Theorem.

The maximum number of edges in a graph *G* on *n* vertices that does not contain K^{r+1} as a subgraph is $|E(T^r(n))|$, and this extremal graph is unique.

- (c) Show that $|E(T^{r}(n))| = \binom{r}{2}$ $\binom{r}{2} + (n-r)(r-1) + |E(T^r(n-r))|$. Observe that $K^r \subseteq T^r(n)$. Call this subgraph *H* and call $T^r(n) - V(H) = G$. Thus, the number of edges in *H* is $\binom{r}{2}$ $\binom{r}{2}$ Each of the *n*−*r* vertices in *G* is adjacent to exactly *r* − 1 of the vertices of *H*. Thus, there are $(n - r)(r - 1)$ edges between $V(H)$ and $V(G)$. Finally we observe that $G = T^r(n - r).$
- 4. Suppose that *G* is planar and triangle-free. Prove that *G* has a vertex of degree at most 3.

Proof: Note that it is sufficient to prove that no connected component of *G* has a vertex of degree at most 3 since if the statement applies to an arbitrary component of *G*, it applies to all of G. Thus, let *C* be a particular connected plane component of the plane graph *G*. Let *n*, *e* and *f* represent the number of vertices, edges and faces of the plane graph *C*. Since *G* is triangle-free, *C* is triangle-free. Thus, every face of *C* has at least four edges on its frontier which implies that $2e \geq 4f$ or $f \leq \frac{1}{2}$ $\frac{1}{2}e$.

Suppose for a contradiction that $\delta(G) \geq 4$. Then, $2e \geq 4n$, or $n \leq \frac{1}{2}$ $rac{1}{2}$ e.

Applying Euler's Formula to *C* we obtain:

$$
2 = n - e + f \le \frac{1}{2}e - e + \frac{1}{2}e = 0,
$$

a contradiction.

5. Suppose that *G* is a graph such that every subgraph of *G* contains a vertex of degree *k* or less. Prove that the chromatic number of *G* is at most $k + 1$.

Proof Suppose that *G* is a graph such that every subgraph of *G* contains a vertex of degree *k* or less.

Let *v*₁ be a vertex of $G = G_1$ of degree at most *k*. Let *v*₂ be a vertex of $G_2 = G_1 - v_1$ of degree at most *k* in G_2 . Proceed iteratively so that v_i is a vertex in $G_i = G_{i-1} - \{v_1, v_2, \dots, v_{i-1}\}$ of degree at most *k*.

Now apply a greedy algorithm to $V(G)$ in the order $v_n, v_{n-1}, \dots, v_2, v_1$.