1. Probability: Problem of Points

The game

A fair coin is repeatedly flipped. If the coin lands as a heads (H), Hilda gets a point. If the coin lands tails, Tom gets a point. The first person to 5 points wins. Each player pays \$10 to play.

You will fill out the table below indicating how much each player should get assuming the game is stopped before finishing. You must justify your calculations using **both** Pascal's method and Fermat's method.

	status of game	payout to	payout to
	at termination	Hilda	Tom
a)	Hilda 4, Tom 4		
b)	Hilda 4, Tom 3		
c)	Hilda 4, Tom 2		
d)	Hilda 4, Tom 1		
e)	Hilda 4, Tom 0		
f)	Hilda 3, Tom 2		

- 2. In class, I described Pascal's Method as **recurrsive**. Using your work from problem 1, explain, in your own words, why this is an accurate description of this method.
- 3. Give an argument that Fermat's strategy is clear and correct theoretically but may be challenging to implement in specific instances.
- 4. (perfect numbers)
 - (a) Use the definition to show that 496 is a perfect number.
 - (b) Show that $496 = 2^{k-1}(2^k 1)$ for some integer k and $2^k 1$ is prime.
- 5. Euler and Number Theory

Recall that Euclid proved: If $2^k - 1$ is prime (k > 1), then $n = 2^{k-1}(2^k - 1)$ is perfect. Euler proved that if *n* is an even perfect number, then $n = 2^{k-1}(2^k - 1)$ for some integer *k* and $2^k - 1$ is prime.

Complete the following using the results above.

- (a) Show that $8128 = 2^6(2^7 1)$ is perfect.
- (b) Show that $2096128 = 2^{10}(2^{11} 1)$ is not perfect.
- (c) We know there are an infinite number of primes. Are there an infinite number of perfect numbers?
- (d) What is the first odd perfect number?

6. Use Euler's method to show $\sum_{i=1}^{\infty} \frac{1}{2i-1} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$.

Hint: Use the Maclaurin Series for $\cos(x)$ and the fact that $\cos(x) = 0$ has roots $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, ...$